## Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets

HTML articles powered by AMS MathViewer

- by S. V. Borodachov, D. P. Hardin and E. B. Saff PDF
- Trans. Amer. Math. Soc.
**360**(2008), 1559-1580 Request permission

## Abstract:

Given a closed $d$-rectifiable set $A$ embedded in Euclidean space, we investigate minimal weighted Riesz energy points on $A$; that is, $N$ points constrained to $A$ and interacting via the weighted power law potential $V=w(x,y)\left |x-y\right |^{-s}$, where $s>0$ is a fixed parameter and $w$ is an admissible weight. (In the unweighted case ($w\equiv 1$) such points for $N$ fixed tend to the solution of the best-packing problem on $A$ as the parameter $s\to \infty$.) Our main results concern the asymptotic behavior as $N\to \infty$ of the minimal energies as well as the corresponding equilibrium configurations. Given a distribution $\rho (x)$ with respect to $d$-dimensional Hausdorff measure on $A$, our results provide a method for generating $N$-point configurations on $A$ that are “well-separated” and have asymptotic distribution $\rho (x)$ as $N\to \infty$.## References

- Nikolay N. Andreev,
*An extremal property of the icosahedron*, East J. Approx.**2**(1996), no. 4, 459–462. MR**1426716** - N. N. Andreev,
*Location of points on a sphere with minimal energy*, Tr. Mat. Inst. Steklova**219**(1997), no. Teor. Priblizh. Garmon. Anal., 27–31 (Russian); English transl., Proc. Steklov Inst. Math.**4(219)**(1997), 20–24. MR**1642295** - John J. Benedetto and Matthew Fickus,
*Finite normalized tight frames*, Adv. Comput. Math.**18**(2003), no. 2-4, 357–385. Frames. MR**1968126**, DOI 10.1023/A:1021323312367 - S.V. Borodachov, On minimization of the energy of varying range interactions on one- and multidimensional conductors,
*Ph.D. Thesis, Vanderbilt University*(2006). - M. Bowick, D.R. Nelson, A. Travesset, Interacting topological defects in frozen topographies,
*Phys. Rev. B***62**(2000), 8738–8751. - J. H. Conway and N. J. A. Sloane,
*Sphere packings, lattices and groups*, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR**1662447**, DOI 10.1007/978-1-4757-6568-7 - Björn E. J. Dahlberg,
*On the distribution of Fekete points*, Duke Math. J.**45**(1978), no. 3, 537–542. MR**507457** - S. Damelin, V. Maymeskul, On mesh norm of $s$-extremal configurations on compact sets in $\mathbb {R}^n$,
*Constructive Functions Tech-04*, 2004 (Atlanta, GA). - P. D. Dragnev, D. A. Legg, and D. W. Townsend,
*Discrete logarithmic energy on the sphere*, Pacific J. Math.**207**(2002), no. 2, 345–358. MR**1972249**, DOI 10.2140/pjm.2002.207.345 - Herbert Federer,
*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR**0257325** - L. Fejes Toth,
*Regular Figures*, Pergamon Press, Berlin–G$\textrm {\ddot {o}}$ttingen–Heidelberg, 1953. - D. P. Hardin and E. B. Saff,
*Minimal Riesz energy point configurations for rectifiable $d$-dimensional manifolds*, Adv. Math.**193**(2005), no. 1, 174–204. MR**2132763**, DOI 10.1016/j.aim.2004.05.006 - D. P. Hardin and E. B. Saff,
*Discretizing manifolds via minimum energy points*, Notices Amer. Math. Soc.**51**(2004), no. 10, 1186–1194. MR**2104914** - A. V. Kolushov and V. A. Yudin,
*On the Korkin-Zolotarev construction*, Diskret. Mat.**6**(1994), no. 1, 155–157 (Russian, with Russian summary); English transl., Discrete Math. Appl.**4**(1994), no. 2, 143–146. MR**1273240**, DOI 10.1515/dma.1994.4.2.143 - A. V. Kolushov and V. A. Yudin,
*Extremal dispositions of points on the sphere*, Anal. Math.**23**(1997), no. 1, 25–34 (English, with Russian summary). MR**1630001**, DOI 10.1007/BF02789828 - A. B. J. Kuijlaars and E. B. Saff,
*Asymptotics for minimal discrete energy on the sphere*, Trans. Amer. Math. Soc.**350**(1998), no. 2, 523–538. MR**1458327**, DOI 10.1090/S0002-9947-98-02119-9 - Pertti Mattila,
*Geometry of sets and measures in Euclidean spaces*, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR**1333890**, DOI 10.1017/CBO9780511623813 - N. S. Landkof,
*Foundations of modern potential theory*, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR**0350027** - A. Martínez-Finkelshtein, V. Maymeskul, E. A. Rakhmanov, and E. B. Saff,
*Asymptotics for minimal discrete Riesz energy on curves in $\Bbb R^d$*, Canad. J. Math.**56**(2004), no. 3, 529–552. MR**2057285**, DOI 10.4153/CJM-2004-024-1 - Theodor William Melnyk, Osvald Knop, and William Robert Smith,
*Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited*, Canad. J. Chem.**55**(1977), no. 10, 1745–1761 (English, with French summary). MR**0444497** - Ian H. Sloan and Robert S. Womersley,
*Extremal systems of points and numerical integration on the sphere*, Adv. Comput. Math.**21**(2004), no. 1-2, 107–125. MR**2065291**, DOI 10.1023/B:ACOM.0000016428.25905.da - Steve Smale,
*Mathematical problems for the next century*, Math. Intelligencer**20**(1998), no. 2, 7–15. MR**1631413**, DOI 10.1007/BF03025291 - V. A. Yudin,
*Minimum potential energy of a point system of charges*, Diskret. Mat.**4**(1992), no. 2, 115–121 (Russian, with Russian summary); English transl., Discrete Math. Appl.**3**(1993), no. 1, 75–81. MR**1181534**, DOI 10.1515/dma.1993.3.1.75

## Additional Information

**S. V. Borodachov**- Affiliation: Department of Mathematics, Center for Constructive Approximation, Vanderbilt University, Nashville, Tennessee 37240
- Address at time of publication: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- MR Author ID: 656604
- Email: sergiy.v.borodachov@vanderbilt.edu, borodasv@math.gatech.edu
**D. P. Hardin**- Affiliation: Department of Mathematics, Center for Constructive Approximation, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 81245
- ORCID: 0000-0003-0867-2146
- Email: doug.hardin@vanderbilt.edu
**E. B. Saff**- Affiliation: Department of Mathematics, Center for Constructive Approximation, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 152845
- Email: edward.b.saff@vanderbilt.edu
- Received by editor(s): February 10, 2006
- Published electronically: October 17, 2007
- Additional Notes: The research of the first author was conducted as a graduate student under the supervision of E.B. Saff and D. P. Hardin at Vanderbilt University.

The research of the second author was supported, in part, by the U. S. National Science Foundation under grants DMS-0505756 and DMS-0532154.

The research of the third author was supported, in part, by the U. S. National Science Foundation under grant DMS-0532154. - © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**360**(2008), 1559-1580 - MSC (2000): Primary 11K41, 70F10, 28A78; Secondary 78A30, 52A40
- DOI: https://doi.org/10.1090/S0002-9947-07-04416-9
- MathSciNet review: 2357705