Giambelli formulae for the equivariant quantum cohomology of the Grassmannian
Author:
Leonardo Constantin Mihalcea
Journal:
Trans. Amer. Math. Soc. 360 (2008), 2285-2301
MSC (2000):
Primary 14N35; Secondary 05E05, 14F43
DOI:
https://doi.org/10.1090/S0002-9947-07-04245-6
Published electronically:
December 11, 2007
MathSciNet review:
2373314
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We find presentations by generators and relations for the equivariant quantum cohomology of the Grassmannian. For these presentations, we also find determinantal formulae for the equivariant quantum Schubert classes. To prove this, we use the theory of factorial Schur functions and a characterization of the equivariant quantum cohomology ring.
- Alberto Arabia, Cohomologie $T$-équivariante de la variété de drapeaux d’un groupe de Kac-Moody, Bull. Soc. Math. France 117 (1989), no. 2, 129–165 (French, with English summary). MR 1015806
- Alexander Astashkevich and Vladimir Sadov, Quantum cohomology of partial flag manifolds $F_{n_1\cdots n_k}$, Comm. Math. Phys. 170 (1995), no. 3, 503–528. MR 1337131
- Aaron Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289–305. MR 1454400, DOI https://doi.org/10.1006/aima.1997.1627
- Aaron Bertram, Ionuţ Ciocan-Fontanine, and William Fulton, Quantum multiplication of Schur polynomials, J. Algebra 219 (1999), no. 2, 728–746. MR 1706853, DOI https://doi.org/10.1006/jabr.1999.7960
- L. C. Biedenharn and J. D. Louck, A new class of symmetric polynomials defined in terms of tableaux, Adv. in Appl. Math. 10 (1989), no. 4, 396–438. MR 1023942, DOI https://doi.org/10.1016/0196-8858%2889%2990023-7
- Sara C. Billey, Kostant polynomials and the cohomology ring for $G/B$, Duke Math. J. 96 (1999), no. 1, 205–224. MR 1663931, DOI https://doi.org/10.1215/S0012-7094-99-09606-0
- Michel Brion, Poincaré duality and equivariant (co)homology, Michigan Math. J. 48 (2000), 77–92. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786481, DOI https://doi.org/10.1307/mmj/1030132709
- Anders Skovsted Buch, Quantum cohomology of Grassmannians, Compositio Math. 137 (2003), no. 2, 227–235. MR 1985005, DOI https://doi.org/10.1023/A%3A1023908007545
- William Y. C. Chen and James D. Louck, The factorial Schur function, J. Math. Phys. 34 (1993), no. 9, 4144–4160. MR 1233264, DOI https://doi.org/10.1063/1.530032
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- Alexander B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 13 (1996), 613–663. MR 1408320, DOI https://doi.org/10.1155/S1073792896000414
- Alexander Givental and Bumsig Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), no. 3, 609–641. MR 1328256
- Ian Goulden and Curtis Greene, A new tableau representation for supersymmetric Schur functions, J. Algebra 170 (1994), no. 2, 687–703. MR 1302864, DOI https://doi.org/10.1006/jabr.1994.1361
- Bumsig Kim, Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairings, Internat. Math. Res. Notices 1 (1995), 1–15. MR 1317639, DOI https://doi.org/10.1155/S1073792895000018
- Bumsig Kim, On equivariant quantum cohomology, Internat. Math. Res. Notices 17 (1996), 841–851. MR 1420551, DOI https://doi.org/10.1155/S1073792896000517
- Bumsig Kim, Quantum cohomology of flag manifolds $G/B$ and quantum Toda lattices, Ann. of Math. (2) 149 (1999), no. 1, 129–148. MR 1680543, DOI https://doi.org/10.2307/121021
- Allen Knutson and Terence Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2003), no. 2, 221–260. MR 1997946, DOI https://doi.org/10.1215/S0012-7094-03-11922-5
- V. Lakshmibai, K. N. Raghavan, and P. Sankaran, Equivariant Giambelli and determinantal restriction formulas for the Grassmannian, Pure Appl. Math. Q. 2 (2006), no. 3, Special Issue: In honor of Robert D. MacPherson., 699–717. MR 2252114, DOI https://doi.org/10.4310/PAMQ.2006.v2.n3.a5
- A. Lascoux. Interpolation - lectures at Tianjin University. June 1996.
- I. G. Macdonald, Schur functions: theme and variations, Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992) Publ. Inst. Rech. Math. Av., vol. 498, Univ. Louis Pasteur, Strasbourg, 1992, pp. 5–39. MR 1308728, DOI https://doi.org/10.1108/EUM0000000002757
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Leonardo Mihalcea, Equivariant quantum Schubert calculus, Adv. Math. 203 (2006), no. 1, 1–33. MR 2231042, DOI https://doi.org/10.1016/j.aim.2005.04.002
- Leonardo Constantin Mihalcea, Positivity in equivariant quantum Schubert calculus, Amer. J. Math. 128 (2006), no. 3, 787–803. MR 2230925
- A. I. Molev. Factorial supersymmetric Schur functions and super Capelli identities. In Proc. of the AMS - Kirillov’s seminar on representation theory, pages 109–137, Providence, RI, 1998. Amer. Math. Soc.
- Alexander I. Molev and Bruce E. Sagan, A Littlewood-Richardson rule for factorial Schur functions, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4429–4443. MR 1621694, DOI https://doi.org/10.1090/S0002-9947-99-02381-8
- Andrei Okounkov, Quantum immanants and higher Capelli identities, Transform. Groups 1 (1996), no. 1-2, 99–126. MR 1390752, DOI https://doi.org/10.1007/BF02587738
- A. Okounkov and O. Olshanski. Shifted Schur functions. St. Petersburg Math. J., 9(2), 1997. also available on ar$\chi$iv: math: q-alg/9605042.
- Alexander Postnikov, Affine approach to quantum Schubert calculus, Duke Math. J. 128 (2005), no. 3, 473–509. MR 2145741, DOI https://doi.org/10.1215/S0012-7094-04-12832-5
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14N35, 05E05, 14F43
Retrieve articles in all journals with MSC (2000): 14N35, 05E05, 14F43
Additional Information
Leonardo Constantin Mihalcea
Affiliation:
Department of Mathematics, Florida State University, 208 Love Building, Tallahassee, Florida 32312
Address at time of publication:
Department of Mathematics, Duke University, Box 90320, Durham, North Carolina 27708
Email:
mihalcea@math.fsu.edu, lmihalce@math.duke.edu
Received by editor(s):
June 17, 2005
Received by editor(s) in revised form:
November 9, 2005
Published electronically:
December 11, 2007
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.