## A solution to the Baer splitting problem

HTML articles powered by AMS MathViewer

- by Lidia Angeleri Hügel, Silvana Bazzoni and Dolors Herbera PDF
- Trans. Amer. Math. Soc.
**360**(2008), 2409-2421 Request permission

## Abstract:

Let $R$ be a commutative domain. We prove that an $R$-module $B$ is projective if and only if $\mathrm {Ext}_R^1(B,T)=0$ for any torsion module $T$. This answers in the affirmative a question raised by Kaplansky in 1962.## References

- Goro Azumaya,
*Finite splitness and finite projectivity*, J. Algebra**106**(1987), no. 1, 114–134. MR**878471**, DOI 10.1016/0021-8693(87)90024-X - Hyman Bass,
*Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc.**95**(1960), 466–488. MR**157984**, DOI 10.1090/S0002-9947-1960-0157984-8 - Reinhold Baer,
*The subgroup of the elements of finite order of an abelian group*, Ann. of Math. (2)**37**(1936), no. 4, 766–781. MR**1503308**, DOI 10.2307/1968617 - S. Bazzoni, D. Herbera,
*One dimensional Tilting modules are of finite type,*to appear in Algebras and Representation Theory. DOI 10.1007/s10468-007-9064-3 - Paul C. Eklof and László Fuchs,
*Baer modules over valuation domains*, Ann. Mat. Pura Appl. (4)**150**(1988), 363–373. MR**946041**, DOI 10.1007/BF01761475 - Paul C. Eklof and Alan H. Mekler,
*Almost free modules*, Revised edition, North-Holland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002. Set-theoretic methods. MR**1914985** - Ioannis Emmanouil,
*Mittag-Leffler condition and the vanishing of $\underleftarrow {\mmlToken {mi}{lim}}^1$*, Topology**35**(1996), no. 1, 267–271. MR**1367284**, DOI 10.1016/0040-9383(94)00056-5 - Paul C. Eklof, László Fuchs, and Saharon Shelah,
*Baer modules over domains*, Trans. Amer. Math. Soc.**322**(1990), no. 2, 547–560. MR**974514**, DOI 10.1090/S0002-9947-1990-0974514-8 - László Fuchs and Luigi Salce,
*Modules over non-Noetherian domains*, Mathematical Surveys and Monographs, vol. 84, American Mathematical Society, Providence, RI, 2001. MR**1794715**, DOI 10.1090/surv/084 - Phillip Griffith,
*A solution to the splitting mixed group problem of Baer*, Trans. Amer. Math. Soc.**139**(1969), 261–269. MR**238957**, DOI 10.1090/S0002-9947-1969-0238957-1 - Phillip Griffith,
*The Baer splitting problem in the twentyfirst century*, Illinois J. Math.**47**(2003), no. 1-2, 237–250. Special issue in honor of Reinhold Baer (1902–1979). MR**2031318** - R. Grimaldi,
*Baer and*Ph.D. thesis, New Mexico State University, 1972.*U*T-modules over domains, - A. Grothendieck, “Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I”, Inst. Hautes Études Sci. Publ. Math.
**11**, 1961. - Chr. U. Jensen,
*On homological dimensions of rings with countably generated ideals*, Math. Scand.**18**(1966), 97–105. MR**207796**, DOI 10.7146/math.scand.a-10784 - Christian U. Jensen and Helmut Lenzing,
*Model-theoretic algebra with particular emphasis on fields, rings, modules*, Algebra, Logic and Applications, vol. 2, Gordon and Breach Science Publishers, New York, 1989. MR**1057608** - Irving Kaplansky,
*The splitting of modules over integral domains*, Arch. Math. (Basel)**13**(1962), 341–343. MR**144939**, DOI 10.1007/BF01650081 - O.A.Laudal,
*Sur la limite projective et la thèorie de la dimension,*Top. et Gèom. Dif., Sèm. Ehresmann, 1961, 23 pp. - Eben Matlis,
*Cotorsion modules*, Mem. Amer. Math. Soc.**49**(1964), 66. MR**178025** - J. J. Rotman,
*On a problem of Baer and a problem of Whitehead in Abelian groups,*Acad. Sci. Hungar.**12**(1961), 245–254. - Saharon Shelah,
*Infinite abelian groups, Whitehead problem and some constructions*, Israel J. Math.**18**(1974), 243–256. MR**357114**, DOI 10.1007/BF02757281 - Charles A. Weibel,
*An introduction to homological algebra*, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR**1269324**, DOI 10.1017/CBO9781139644136

## Additional Information

**Lidia Angeleri Hügel**- Affiliation: Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria, Via Mazzini 5, I - 21100 Varese, Italy
- MR Author ID: 358523
- Email: lidia.angeleri@uninsubria.it
**Silvana Bazzoni**- Affiliation: Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, I-35121 Padova, Italy
- MR Author ID: 33015
- Email: bazzoni@math.unipd.it
**Dolors Herbera**- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
- Email: dolors@mat.uab.es
- Received by editor(s): October 26, 2005
- Received by editor(s) in revised form: January 19, 2006
- Published electronically: December 11, 2007
- Additional Notes: The first and second authors were supported by Università di Padova (Progetto di Ateneo CDPA048343 “Decomposition and tilting theory in modules, derived and cluster categories”). The first and third authors were supported by the DGI and the European Regional Development Fund, jointly, through Project MTM2005-00934. The third author was supported by the Comissionat per Universitats i Recerca of the Generalitat de Catalunya and by the “Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni” (Italy). Part of this paper was written while the third author was visiting the universities in Padova and in Varese; she wants to thank her hosts for their hospitality
- © Copyright 2007 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**360**(2008), 2409-2421 - MSC (2000): Primary 13C05, 16E30; Secondary 13G05, 16D40
- DOI: https://doi.org/10.1090/S0002-9947-07-04255-9
- MathSciNet review: 2373319