## When is the commutant of a Bol loop a subloop?

HTML articles powered by AMS MathViewer

- by Michael K. Kinyon, J. D. Phillips and Petr Vojtěchovský PDF
- Trans. Amer. Math. Soc.
**360**(2008), 2393-2408 Request permission

## Abstract:

A left Bol loop is a loop satisfying $x(y(xz)) = (x(yx))z$. The commutant of a loop is the set of elements which commute with all elements of the loop. In a finite Bol loop of odd order or of order $2k$, $k$ odd, the commutant is a subloop. We investigate conditions under which the commutant of a Bol loop is not a subloop. In a finite Bol loop of order relatively prime to $3$, the commutant generates an abelian group of order dividing the order of the loop. This generalizes a well-known result for Moufang loops. After describing all extensions of a loop $K$ such that $K$ is in the left and middle nuclei of the resulting loop, we show how to construct classes of Bol loops with a non-subloop commutant. In particular, we obtain all Bol loops of order $16$ with a non-subloop commutant.## References

- Richard Hubert Bruck,
*A survey of binary systems*, Reihe: Gruppentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR**0093552**, DOI 10.1007/978-3-662-35338-7 - R. P. Burn,
*Finite Bol loops*, Math. Proc. Cambridge Philos. Soc.**84**(1978), no. 3, 377–385. MR**492030**, DOI 10.1017/S0305004100055213 - R. P. Burn,
*Finite Bol loops. II*, Math. Proc. Cambridge Philos. Soc.**89**(1981), no. 3, 445–455. MR**602299**, DOI 10.1017/S0305004100058357 - Edgar G. Goodaire and D. A. Robinson,
*Semi-direct products and Bol loop*, Demonstratio Math.**27**(1994), no. 3-4, 573–588. Dedicated to T. Traczyk on the occasion of his 70th birthday. MR**1319403** - Hubert Kiechle,
*Theory of $K$-loops*, Lecture Notes in Mathematics, vol. 1778, Springer-Verlag, Berlin, 2002. MR**1899153**, DOI 10.1007/b83276 - H. Kiechle and G. P. Nagy,
*On the extension of involutorial Bol loops*, Abh. Math. Sem. Univ. Hamburg**72**(2002), 235–250. MR**1941556**, DOI 10.1007/BF02941674 - Michael K. Kinyon and J. D. Phillips,
*Commutants of Bol loops of odd order*, Proc. Amer. Math. Soc.**132**(2004), no. 3, 617–619. MR**2019935**, DOI 10.1090/S0002-9939-03-07211-3 - G. P. Nagy and P. Vojtěchovský,
*LOOPS: Computing with quasigroups and loops in GAP*, version 1.0.0, computational package for GAP; http://www.math.du.edu/loops - W. W. McCune,
*OTTER 3.3 Reference Manual and Guide*, Argonne National Laboratory Technical Memorandum ANL/MCS-TM-263, 2003; http://www.mcs.anl.gov/AR/otter/ - W. W. McCune,
*Prover9*, automated reasoning software, Argonne National Laboratory, 2005; http://www.mcs.anl.gov/AR/prover9/ - W. W. McCune,
*Mace 4.0 Reference Manual and Guide*, Argonne National Laboratory Technical Memorandum ANL/MCS-TM-264, 2003; http://www.mcs.anl.gov/AR/mace4/ - G. Eric Moorhouse, Bol Loops of Small Order; http://www.uwyo.edu/moorhouse/pub/bol/ index.html
- Hala O. Pflugfelder,
*Quasigroups and loops: introduction*, Sigma Series in Pure Mathematics, vol. 7, Heldermann Verlag, Berlin, 1990. MR**1125767** - D. A. Robinson,
*Bol loops*, Trans. Amer. Math. Soc.**123**(1966), 341–354. MR**194545**, DOI 10.1090/S0002-9947-1966-0194545-4

## Additional Information

**Michael K. Kinyon**- Affiliation: Department of Mathematics, University of Denver, 2360 S Gaylord Street, Denver, Colorado 80208
- MR Author ID: 267243
- ORCID: 0000-0002-5227-8632
- Email: mkinyon@math.du.edu
**J. D. Phillips**- Affiliation: Department of Mathematics & Computer Science, Wabash College, Crawfordsville, Indiana 47933
- MR Author ID: 322053
- Email: phillipj@wabash.edu
**Petr Vojtěchovský**- Affiliation: Department of Mathematics, University of Denver, 2360 S Gaylord Street, Denver, Colorado 80208
- MR Author ID: 650320
- Email: petr@math.du.edu
- Received by editor(s): January 16, 2006
- Published electronically: November 27, 2007
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**360**(2008), 2393-2408 - MSC (2000): Primary 20N05
- DOI: https://doi.org/10.1090/S0002-9947-07-04391-7
- MathSciNet review: 2373318