Local and global $C$-regularity
HTML articles powered by AMS MathViewer
- by Ni̇hat Gökhan Göğüş PDF
- Trans. Amer. Math. Soc. 360 (2008), 2693-2707 Request permission
Abstract:
A bounded domain $D$ is called $c$-regular if the plurisubharmonic envelope of every continuous function on $\overline D$ extends continuously to $\overline D$. We show using Gauthier’s Fusion Lemma that a domain is locally $c$-regular if and only if it is $c$-regular.References
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- Magnus Carlehed, Urban Cegrell, and Frank Wikström, Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function, Ann. Polon. Math. 71 (1999), no. 1, 87–103. MR 1684047, DOI 10.4064/ap-71-1-87-103
- P. M. Gauthier, Approximation by (pluri)subharmonic functions: fusion and localization, Canad. J. Math. 44 (1992), no. 5, 941–950. MR 1186474, DOI 10.4153/CJM-1992-058-x
- Nihat Gokhan Gogus, Continuity of plurisubharmonic envelopes, Ann. Polon. Math. 86 (2005), no. 3, 197–217. MR 2207634, DOI 10.4064/ap86-3-1
- Shiro Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), no. 1, 65–71. MR 412909, DOI 10.1090/S0002-9939-1976-0412909-X
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, Basler Lehrbücher [Basel Textbooks], vol. 4, Birkhäuser Verlag, Basel, 1992. MR 1182792, DOI 10.1007/978-3-0348-7644-5
- Evgeny A. Poletsky, Plurisubharmonic functions as solutions of variational problems, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 163–171. MR 1128523
- Evgeny A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), no. 1, 85–144. MR 1218708, DOI 10.1512/iumj.1993.42.42006
- Evgeny A. Poletsky, Analytic geometry on compacta in $\textbf {C}^n$, Math. Z. 222 (1996), no. 3, 407–424. MR 1400200, DOI 10.1007/PL00004541
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- Nessim Sibony, Une classe de domaines pseudoconvexes, Duke Math. J. 55 (1987), no. 2, 299–319 (French). MR 894582, DOI 10.1215/S0012-7094-87-05516-5
- J. B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968/1969), 143–148. MR 0227465, DOI 10.1512/iumj.1969.18.18015
- Frank Wikström, Jensen measures and boundary values of plurisubharmonic functions, Ark. Mat. 39 (2001), no. 1, 181–200. MR 1821089, DOI 10.1007/BF02388798
Additional Information
- Ni̇hat Gökhan Göğüş
- Affiliation: Department of Mathematics, 215 Carnegie Hall, Syracuse University, Syracuse, New York 13244
- Address at time of publication: Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, 34956, Istanbul, Turkey
- Email: nggogus@syr.edu, nggogus@sabanciuniv.edu
- Received by editor(s): October 28, 2005
- Received by editor(s) in revised form: August 2, 2006
- Published electronically: December 11, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 2693-2707
- MSC (2000): Primary 32U15
- DOI: https://doi.org/10.1090/S0002-9947-07-04400-5
- MathSciNet review: 2373330