Classification of abelian hereditary directed categories satisfying Serre duality
HTML articles powered by AMS MathViewer
- by Adam-Christiaan van Roosmalen PDF
- Trans. Amer. Math. Soc. 360 (2008), 2467-2503 Request permission
Abstract:
In an ongoing project to classify all hereditary abelian categories, we provide a classification of $\operatorname {Ext}$-finite directed hereditary abelian categories satisfying Serre duality up to derived equivalence. In order to prove the classification, we will study the shapes of Auslander-Reiten components extensively and use appropriate generalizations of tilting objects and coordinates, namely partial tilting sets and probing of objects by quasi-simples.References
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422, DOI 10.1017/CBO9780511623608
- George M. Bergman and Warren Dicks, Universal derivations and universal ring constructions, Pacific J. Math. 79 (1978), no. 2, 293–337. MR 531320, DOI 10.2140/pjm.1978.79.293
- A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 3, 519–541. MR 1039961, DOI 10.1070/IM1990v035n03ABEH000716
- Dieter Happel, A characterization of hereditary categories with tilting object, Invent. Math. 144 (2001), no. 2, 381–398. MR 1827736, DOI 10.1007/s002220100135
- Wendy Lowen and Michel Van den Bergh, Deformation theory of abelian categories, submitted for publication (2004).
- I. Reiten and M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), no. 2, 295–366. MR 1887637, DOI 10.1090/S0894-0347-02-00387-9
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), no. 2, 199–224 (German). MR 576602, DOI 10.1007/BF02566682
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
- Claus Michael Ringel, The diamond category of a locally discrete ordered set, Representations of algebra. Vol. I, II, Beijing Norm. Univ. Press, Beijing, 2002, pp. 387–395. MR 2067391
- —, Hereditary triangulated categories, Compositio Mathematica (2005).
- J. T. Stafford and M. van den Bergh, Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 2, 171–216. MR 1816070, DOI 10.1090/S0273-0979-01-00894-1
- Jie Xiao and Bin Zhu, Relations for the Grothendieck groups of triangulated categories, J. Algebra 257 (2002), no. 1, 37–50. MR 1942270, DOI 10.1016/S0021-8693(02)00122-9
Additional Information
- Adam-Christiaan van Roosmalen
- Affiliation: Research Group Algebra, Hasselt University, Agoralaan, gebouw D, B-3590 Diepenbeek, Belgium
- Email: AdamChristiaan.vanRoosmalen@UHasselt.be
- Received by editor(s): February 9, 2006
- Published electronically: October 30, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 2467-2503
- MSC (2000): Primary 16G20, 16G70, 18E10, 18E30
- DOI: https://doi.org/10.1090/S0002-9947-07-04426-1
- MathSciNet review: 2373322