Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with $p$-Laplacian
HTML articles powered by AMS MathViewer
- by D. Motreanu, V. V. Motreanu and N. S. Papageorgiou PDF
- Trans. Amer. Math. Soc. 360 (2008), 2527-2545 Request permission
Abstract:
In this paper we study eigenvalue problems for hemivariational inequalities driven by the $p$-Laplacian differential operator. We prove the existence of positive smooth solutions for both non-resonant and resonant problems at the principal eigenvalue of the negative $p$-Laplacian with homogeneous Dirichlet boundary condition. We also examine problems which are near resonance both from the left and from the right of the principal eigenvalue. For nearly resonant from the right problems we also prove a multiplicity result.References
- Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
- Aomar Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728 (French, with English summary). MR 920052
- Giuseppina Barletta and Salvatore A. Marano, Some remarks on critical point theory for locally Lipschitz functions, Glasg. Math. J. 45 (2003), no. 1, 131–141. MR 1972703, DOI 10.1017/S0017089502001088
- Kung Ching Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), no. 1, 102–129. MR 614246, DOI 10.1016/0022-247X(81)90095-0
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Leszek Gasiński and Nikolaos S. Papageorgiou, Multiple solutions for semilinear hemivariational inequalities at resonance, Publ. Math. Debrecen 59 (2001), no. 1-2, 121–146. MR 1853497
- Leszek Gasiński and Nikolaos S. Papageorgiou, Existence of solutions and of multiple solutions for eigenvalue problems of hemivariational inequalities, Adv. Math. Sci. Appl. 11 (2001), no. 1, 437–464. MR 1842386
- Leszek Gasiński and Nikolaos S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Series in Mathematical Analysis and Applications, vol. 8, Chapman & Hall/CRC, Boca Raton, FL, 2005. MR 2092433
- D. Goeleven, D. Motreanu, and P. D. Panagiotopoulos, Multiple solutions for a class of eigenvalue problems in hemivariational inequalities, Nonlinear Anal. 29 (1997), no. 1, 9–26. MR 1447566, DOI 10.1016/S0362-546X(96)00039-9
- D. Goeleven, D. Motreanu, and P. D. Panagiotopoulos, Eigenvalue problems for variational-hemivariational inequalities at resonance, Nonlinear Anal. 33 (1998), no. 2, 161–180. MR 1621101, DOI 10.1016/S0362-546X(97)00521-X
- Gongbao Li and Huan-Song Zhou, Asymptotically linear Dirichlet problem for the $p$-Laplacian, Nonlinear Anal. 43 (2001), no. 8, Ser. A: Theory Methods, 1043–1055. MR 1812073, DOI 10.1016/S0362-546X(99)00243-6
- R. Livrea, S. A. Marano, and D. Motreanu, Critical points for nondifferentiable functions in presence of splitting, J. Differential Equations 226 (2006), no. 2, 704–725. MR 2237697, DOI 10.1016/j.jde.2005.11.001
- D. Motreanu and P. D. Panagiotopoulos, A minimax approach to the eigenvalue problem of hemivariational inequalities and applications, Appl. Anal. 58 (1995), no. 1-2, 53–76. MR 1384589, DOI 10.1080/00036819508840362
- D. Motreanu and P. D. Panagiotopoulos, On the eigenvalue problem for hemivariational inequalities: existence and multiplicity of solutions, J. Math. Anal. Appl. 197 (1996), no. 1, 75–89. MR 1371277, DOI 10.1006/jmaa.1996.0008
- D. Motreanu and P. D. Panagiotopoulos, Minimax theorems and qualitative properties of the solutions of hemivariational inequalities, Nonconvex Optimization and its Applications, vol. 29, Kluwer Academic Publishers, Dordrecht, 1999. MR 1675895, DOI 10.1007/978-1-4615-4064-9
- Dumitru Motreanu and Nikolaos S. Papageorgiou, Multiple solutions for nonlinear elliptic equations at resonance with a nonsmooth potential, Nonlinear Anal. 56 (2004), no. 8, 1211–1234. MR 2040681, DOI 10.1016/j.na.2003.11.011
- Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, Monographs and Textbooks in Pure and Applied Mathematics, vol. 188, Marcel Dekker, Inc., New York, 1995. MR 1304257
- J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202. MR 768629, DOI 10.1007/BF01449041
- Xian Wu, A new critical point theorem for locally Lipschitz functionals with applications to differential equations, Nonlinear Anal. 66 (2007), no. 3, 624–638. MR 2274873, DOI 10.1016/j.na.2005.12.006
Additional Information
- D. Motreanu
- Affiliation: Département de Mathématiques, Université de Perpignan, 66860 Perpignan, France
- Email: motreanu@univ-perp.fr
- V. V. Motreanu
- Affiliation: Département de Mathématiques, Université de Perpignan, 66860 Perpignan, France
- Email: viorica@univ-perp.fr
- N. S. Papageorgiou
- Affiliation: Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece
- MR Author ID: 135890
- Email: npapg@math.ntua.gr
- Received by editor(s): February 14, 2006
- Published electronically: December 11, 2007
- © Copyright 2007 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 360 (2008), 2527-2545
- MSC (2000): Primary 35J20, 35R70; Secondary 35J60, 35J85
- DOI: https://doi.org/10.1090/S0002-9947-07-04449-2
- MathSciNet review: 2373324