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KNOT ADJACENCY AND FIBERING

EFSTRATIA KALFAGIANNI AND XIAO-SONG LIN

Abstract. It is known that the Alexander polynomial detects fibered knots
and 3-manifolds that fiber over the circle. In this note, we show that when
the Alexander polynomial becomes inconclusive, the notion of knot adjacency
can be used to obtain obstructions to the fibering of knots and of 3-manifolds.
As an application, given a fibered knot K′, we construct infinitely many non-
fibered knots that share the same Alexander module with K′. Our construction
also provides, for every n ∈ N , examples of irreducible 3-manifolds that cannot
be distinguished by the Cochran-Melvin finite type invariants of order ≤ n.

1. Introduction

The problem of detecting fiberedness (or non-fiberedness) of knots has been stud-
ied considerably from both the algebraic and the geometric topology viewpoint.
The classical Alexander polynomial of a fibered knot is known to be monic and this
provides an effective criterion for detecting fibered knots. The converse is not in
general true, although it holds for several special classes of knots including alter-
nating knots and knots up to ten crossings. Non-commutative generalizations of
the Alexander polynomial, such as the higher order Alexander polynomials defined
in [C] and suitable versions of the twisted Alexander polynomials, are known to
detect non-fibered knots with the monic Alexander polynomial ([GKM, Ch, FKi]).
A geometric procedure to detect fibered knots was developed by Gabai in [Ga2].

The purpose of this paper is to introduce a new criterion for detecting non-fibered
knots when the Alexander polynomial fails, and to present several applications of
this criterion. Our approach combines both the algebraic and the geometric point
of view. To describe our results, we recall that the knot K is said to be n-adjacent
to another knot K ′, if K admits a projection containing n crossings such that
changing any 0 < m ≤ n of them yields a projection of K ′. The notion of knot
adjacency was studied in [KL1] and the theory was further developed in [KL], [K1].
In particular, in [K1] we showed that high degree adjacency (n > 1) to fibered
knots imposes strong restrictions on the knot genus. In this paper, we explore the
role of knot adjacency as an obstruction to fiberedness. We show that when the
Alexander polynomial provides inconclusive evidence, high degree knot adjacencies
obstruct knots to be fibered. More precisely, we have the following.
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3250 EFSTRATIA KALFAGIANNI AND XIAO-SONG LIN

Theorem 1.1. Let K, K ′ be distinct knots with equal Alexander polynomials. Sup-
pose that K ′ is fibered. If K is n-adjacent to K ′ for some n > 1, then K is not
fibered. Furthermore, the 3-manifold K(0) obtained by 0-Dehn surgery of S3 along
K does not admit a fibration over S1.

Since it is known that all knots up to ten crossings that have monic Alexander
polynomial are fibered ([Ga2]), the knots that are detected by Theorem 1.1 have
large crossing numbers. In Section 2 we give a systematic procedure that constructs
vast families of such knots. In particular, given a fibered knot K ′, we construct
infinitely many non-fibered knots that share the same Alexander module with K ′.
To state our results, for a knot K, let ∆K(t) denote the Alexander polynomial of
K, let δ(K) denote the degree of ∆K(t) and let g(K) denote the genus of K. It is
well known that if a knot K is fibered, then m(K) := 2g(K) − δ(K) = 0.

Theorem 1.2. Given a fibered knot K ′ there exist infinitely many knots {Kn}n∈N,
such that:

(a) Kn and K ′ have the same Alexander module.

(b) g(Kn) > g(K ′) and
n + 3

6
≤ g(Kn).

(c) m(Kn) > 0 and limn→∞ m(Kn) = ∞. In particular, Kn is not fibered.
(d) Kn(0) does not fiber over S1.
Furthermore, if K ′ is a prime knot, then Kn can be chosen to be prime.

In the course of the proof of Theorem 1.2, we show that all the knots {Kn}n∈N

share a common equivalence class of Seifert matrices with K ′. Thus, Kn and K
cannot be distinguished by abelian invariants (e.g. torsion numbers, signature,
Blanchfield linking forms). This gives a new proof of a slightly weaker version of
the main result of [Ch].

As another application of Theorem 1.1, we construct families of 3-manifolds
that cannot be distinguished by certain finite type invariants. For Z-homology 3-
spheres these invariants were defined by Ohtsuki in [O]. An extension of Ohtsuki’s
theory to arbitrary 3-manifolds was proposed by Cochran and Melvin in [CM].
There exist constructions that yield irreducible distinct homology 3-spheres with
the same finite type invariants of bounded order ([K]). Here we give examples of
irreducible 3-manifolds with non-trivial homology that cannot be distinguished by
their finite type invariants in the sense of [CM]. To state our results, for a knot K
and a number s ∈ Q, let K(s) denote the 3-manifold obtained by s-Dehn surgery
of S3 along K. We show that if K, K ′ are knots such that K is n-adjacent to K ′,
then, for every s ∈ Q, K(s) and K ′(s) cannot be distinguished by any finite type
invariant of order < n (Proposition 4.3). Combining this with Theorem 1.1 we
obtain the following:

Corollary 1.3. For every n ∈ N, there exist closed, irreducible 3-manifolds M, M ′

such that:
(a) M and M ′ have the homology type of S2 × S1.
(b) For every commutative ring R with unit, M and M ′ have the same R-valued

Cochran-Melvin finite type invariants of order < n.
(c) Exactly one of M, M ′ fibers over S1.

The examples of Corollary 1.3 are obtained by 0-Dehn surgery on knots K ⊂ S3.
If 0 �= s :=

a

b
, then K(s) is a Q-homology sphere. In particular, if K is the unknot,
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then K(s) is the Lens space L(a, b) and thus π1(K(s)) = Za. Combining our work
with the Cyclic Surgery Theorem of Culler, Gordon, Luecke and Shalen ([CGLS])
we obtain the following:

Corollary 1.4. Given n ∈ N, there exists a knot K ⊂ S3 and an integer rK such
that for every s :=

a

b
�= rK , rK + 1 we have:

(a) π1(K(s)) �= π1(L(a, b)).
(b) For every commutative ring R with unit, K(s) and L(a, b) have the same

R-valued Cochran-Melvin finite type invariants of order < n.

The examples of Corollary 1.3 and Corollary 1.4 are the first known examples
of irreducible, non-Z-homology spheres that are not distinguished by finite type
invariants of bounded order.

The paper is organized as follows: In Sections 2 and 3 we state a fibering criterion
in terms of knot adjacency and discuss its applications to detecting non-fibered
knots and 3-manifolds. In Section 4 we begin by recalling from [CM] the definition
of finite type invariants for arbitrary 3-manifolds. Then, we apply our results from
Sections 2 and 3 to construct examples of 3-manifolds with the same finite type
invariants of bounded orders and to prove Corollaries 1.3 and 1.4. In Section 5, we
give the proof of Theorem 1.3. Section 6 is a short appendix in which we discuss
that, combined with work of Kronheimer, Theorem 1.2 can be used to detect the
existence of symplectic structures on certain 4-manifolds.

2. Adjacency to fibered knots and the Alexander polynomial

Let K be a knot in S3 and let q ∈ Z. A generalized crossing of order q on a
projection of K is a set C of |q| twist crossings on two strings that inherit opposite
orientations from any orientation of K. If K ′ is obtained from K by changing
all the crossings in C simultaneously, we will say that K ′ is obtained from K by
a generalized crossing change of order q. Note that if |q| = 1, K and K1 differ
by an ordinary crossing change while if q = 0 we have K = K ′. A crossing disc
corresponding to a generalized crossing C of a knot K is an embedded disc D ⊂ S3

such that K intersects int(D) twice, with a zero algebraic intersection number (once
for each string of K forming the crossing). The curve ∂D is called a crossing circle
corresponding to C. The crossing is called nugatory if ∂D bounds a disc in the
complement of K.

Definition 2.1. We will say that K is n-adjacent to K ′, for some n > 0, if K admits
a projection containing n generalized crossings such that changing any 0 < m ≤ n

of them yields a projection of K ′. We will write K
n−→ K ′.

For a knot K, let g(K) denote its genus and let δ := δ(K) denote the degree of
its Alexander polynomial ∆K(t) =

∑δ
i=0 ait

i. We have the following theorem, that
contains the first conclusion in Theorem 1.1.

Theorem 2.2. Let K, K ′ be knots such that δ(K) = δ(K ′) and K
n−→ K ′, for some

n > 1. If K ′ is fibered, then either K is isotopic to K ′ or we have g(K) > g(K ′).
Furthermore, in the later case, K is neither fibered nor alternating.

Proof. Since K ′ is fibered, we have δ(K ′) = 2g(K ′). Thus we have

(1) δ(K) = δ(K ′) = 2g(K ′).
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The assumption that K
n−→ K ′ allows as to apply the results of [KL1, K1]: Indeed,

as it was shown in [K1], if K is n-adjacent to a fibered knot K ′, for some n > 1,
then either K is isotopic to K ′ or we have g(K) > g(K ′). If g(K) > g(K ′),
then (1) implies that m(K) := 2g(K) − δ(K) > 0 and thus K is not fibered or
alternating. �

By Corollary 8.19 of [Ga1], K(0) fibers over S1 precisely when K is a fibered knot.
Thus, the second conclusion of Theorem 1.1 holds. The next theorem and its proof
provide vast collections of non-fibered knots with monic Alexander polynomials
that are detected by Theorem 2.2.

Theorem 2.3. Given a fibered knot K ′ and n > 1, there exists a knot K with the
following properties:

(a) K
n−→ K ′.

(b) K and K ′ have the same Alexander module.
(c) g(K) > g(K ′).
(d) If K ′ is a prime knot, then K can be chosen to be prime.

Remark 2.4. Theorem 2.3 (a)-(c) remains true for n = 1. To see this, let J be a knot
with trivial Alexander polynomial that can be unknotted by a single generalized
crossing change (e.g. an untwisted Whitehead double of any knot). Then the
connected sum K := J#K ′ has the properties (a)-(c) of Theorem 2.3.

The proof of Theorem 2.3 and that of Theorem 1.2 are given in section 5. In the
next two sections we present applications of Theorems 1.1 and 1.2.

3. Obstructing fibrations

Let K1 denote the set of isotopy classes of knots with monic Alexander polyno-
mial and recall that for K ∈ K1, we denote m(K) := 2g(K) − δ(K) ≥ 0, where
δ(K) is the degree of the Alexander polynomial of K. For K ∈ K1, let FK ⊂ K1

denote the set of isotopy classes of fibered knots, that are distinct from K but share
the same Alexander polynomial with K. As shown in [Mo], if δ(K) > 2, then FK

is infinite. On the other hand, it is known that the only fibered knots of genus ≤ 1
are the trefoils, the figure eight and the unknot. It is easy to see that all degree
≤ 2 monic Alexander polynomials are realized by these knots. Thus, if δ(K) ≤ 2,
then FK is finite. Fix K ∈ K1. For K ′ ∈ FK , let

I(K, K ′) := {n > 1 | K
n−→ K ′}.

We define a(K, K ′) := max{n ∈ I(K, K ′)} if the set I(K, K ′) is non-empty.
Otherwise, we define a(K, K ′) := 0. Finally, we define

α(K) := max{a(K, K ′), K ′ ∈ FK}.
The quantity α(K) is clearly an invariant of K. Roughly speaking, it measures the
degree of adjacency of a knot with monic Alexander polynomial to fibered knots
with the same polynomial. By definition, we have α(K) ∈ N ∪ {∞}; the following
proposition shows that, in fact, α(K) < ∞, for every K ∈ K1.

Proposition 3.1. The invariant α has the following properties:
(a) We have 0 ≤ α(K) ≤ 6g(K) − 3, for every K ∈ K1.
(b) If m(K) = 0, then α(K) = 0. In particular, if K is fibered, then α(K) = 0.
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Proof. Clearly we have α(K) ≥ 0. By definition, if α(K) > 0, then there is a
fibered knot K ′ �= K such that ∆K(t) = ∆K′(t) and K

n−→ K ′, for some n > 1.
By Theorem 2.2, we must have g(K) > g(K ′), and Theorem 1.3 of [KL1] applies
to conclude that n ≤ 6g(K) − 3. Thus part (a) is proved. To see part (b) suppose
that m(K) := 2g(K) − δ(K) = 0 and that α(K) > 0. Then, by definition, there
is a fibered knot K ′ �= K such that δ(K ′) = δ(K) and K

n−→ K ′, for some n > 1.
Since K ′ is fibered we have δ(K ′) = 2g(K ′). But since δ(K) = 2g(K), we conclude
that g(K) = g(K ′). But this is impossible, since by Theorem 2.2 we must have
g(K) > g(K ′). �

The proof of the next corollary uses α(K) to produce infinitely many non-fibered
knots with a given monic Alexander polynomial.

Corollary 3.2. For every fibered knot K ′ there exist infinitely many non-fibered
knots {Kn}n∈N each of which has the same Alexander module with K ′. Further-
more, if K ′ is a prime knot, then Kn can be taken to be prime.

Proof. Let K ′ be a fibered knot and fix n′ > 1. By Theorem 2.3 there exists a knot
K1 such that

∆K1(t) = ∆K(t), K1
n′
−→ K ′, and g(K1) > g(K ′).

It follows that 2g(K1) > δ(K1) which implies that K1 is non-fibered. Clearly
α(K1) ≥ α(K1, K ′) ≥ n′. Suppose, inductively, that we have constructed non-
fibered knots K1, . . . , Km such that α(Km) > . . . > α(K1) ≥ n′ and ∆Km

(t) =
. . . = ∆K1(t) = ∆K(t). Clearly, K1, . . . , Km are distinct. Now choose n >> α(Km)
and let Km+1 be any knot obtained by applying Theorem 2.3 to this n. �

By Theorem 1.2(b), the knots {Kn}n∈N can be chosen so that g(Kn+1) > g(Kn).
By [Ga1], the 3-manifold Kn(0) contains a closed, embedded, orientable, non-
separating surface of genus g(Kn) and contains no such surface of smaller genus. It
follows that the manifolds {Kn(0)}n∈N are all distinct. On the other hand, since
the Alexander module of Kn(0) is the same as that of Kn, all these 3-manifolds
have the same Milnor torsion ([Tu]). Thus we obtain the following:

Corollary 3.3. Given a fibered knot K ′ there exist infinitely many non-fibered
knots {Kn}n∈N, such that the 3-manifolds {Kn(0)}n∈N are all distinct but have
the same Milnor torsion with K ′(0).

4. Cochran-Melvin invariants of 3-manifolds

There exist several constructions of Z-homology 3-spheres that are indistinguish-
able by Ohtsuki invariants of bounded order. The examples given in [K] are obtained
by Dehn surgery along suitable knots in S3. In [CM] Cochran and Melvin gener-
alized Ohtsuki’s theory to define finite type invariants for arbitrary 3-manifolds.
The knots we construct in this paper, and in particular those in the proof of The-
orem 2.3, fit nicely into the theory of [CM] and lead to a natural extension of
the construction of [K] in this setting. Before we state our results we recall some
definitions.

Definition 4.1. A framed link L in a closed, oriented 3-manifold N is called
admissible iff we have:

(i) Each component of L is null-homologous in N .
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(ii) All the pairwise linking numbers of L in N vanish.
(iii) The framings are ±1 with respect to the longitudes given by (i).

Let N be a closed oriented 3-manifold. The set S := S(N) of homeomorphism
classes of 3-manifolds that are H1-cobordant to N is precisely the set of 3-manifolds
obtained by surgery of N along admissible links ([CM]). Let R be a commutative
ring with unit, and let M(N) be the R-module freely spanned by S. For M ∈ S
and an admissible link L ⊂ M define [M, L] ∈ M(N) by

(2) [M, L] :=
∑

L′⊂L

(−1)#L
′

ML′

where L
′
ranges over all sublinks of L (including the empty one). Here #L

′
denotes

the number of components of L
′
and ML′ denotes the 3-manifold obtained from M

by surgery along L
′
. For l ≥ 0, let Ml(N) denote the submodule of M(N) that

is freely spanned by all expressions [M, L], where M ∈ S and L is an admissible
link in M with #L ≥ l. Let H denote the set of H1-cobordism classes of closed,
oriented 3-manifolds; for i ∈ H choose a representative Ni. Let

M :=
⊕
i∈H

M(Ni) and Ml :=
⊕
i∈H

Ml(Ni).

Definition 4.2 ([CM]). A functional f : M/Mn+1 −→ R is called an R-valued
finite type invariant of order ≤ n. We will use Fn to denote the space of all such
functionals.

One can see that

Fn
∼=

⊕
i∈H

Hom(Gn(Ni), R) where Gn(Ni) := M(Ni)/Mn+1(Ni).

Thus, the invariants of finite type of [CM] are constructed from invariants in each
H1-cobordism class. Moreover, the invariants of type 0 are exactly the functionals
H −→ R. In [CM] it is shown that, for every n ∈ N, Hom(Gn(Ni), R) is a finite
dimensional non-trivial R-module. To state our results, for a knot K ⊂ S3 and a
rational number s ∈ Q, let K(s) denote the 3-manifold obtained by s-surgery of
S3 along K. Note that K(s) is either a rational homology 3-sphere or a homology
S2 × S1 manifold.

Proposition 4.3. Suppose that K, K ′ are knots such that K
n−→ K ′, for some

n > 0. Suppose, moreover, that there exists a collection of n ordinary crossings
that exhibit K as n-adjacent to K ′. Then, for every s ∈ Q, we have:

f(K(s)) = f(K ′(s)),

for every f ∈ Fn−1.

Proof. Fix n > 0 and let K, K ′ be knots such that K admits a collection of ordinary
crossings C that exhibit it as n-adjacent to K ′. Let L ⊂ S3 be an n-component link
consisting of a crossing circle for each of the crossings in C. The crossing change
can be achieved by doing surgery of S3 along the corresponding crossing circle; the
framing of the surgery is +1 or −1 according to whether the crossing is positive
or negative. Thus L can be considered as admissible. Since the linking number of
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K with each component of L is zero, each component of L is null-homologous in
S3 \K. Since, for every s ∈ Q, there is an epimorphism H1(S3 \K) −→ H1(K(s)),
it follows that the image of L in M := K(s) is an admissible link; we will still
denote this link by L. Let L′ ⊂ L ⊂ M be a non-empty sublink of L in M . The
3-manifold ML′ , obtained by surgery of M along L′, can be alternatively described
as follows: First perform surgery of S3 along L′; this gives back S3 but it changes
K to K ′. Then, perform s-Dehn surgery of S3 along K ′. From these considerations
we conclude that ML′ = K ′(s). Thus (2) yields

(3) [M, L] = M − K ′(s).

Now let f ∈ Fn−1. Since by definition f([M, L]) = 0, from (3) we obtain f(M) =
f(K ′(s)) as desired. �

Corollary 4.4. Let n > 0. For every fibered knot K ′ ⊂ S3 there exists a non-fibered
knot K ⊂ S3 such that for every s ∈ Q, we have:

f(K(s)) = f(K ′(s)),

for every f ∈ Fn−1.

Proof. Given n and K ′ as above, let K be a knot corresponding to n and K ′ in the
sense of Theorem 2.3 if n > 1. Since we do not require K to be prime, we will use
Remark 2.4 to conclude that such a K also exists when n = 1. By the same token,
the proof of Theorem 2.3 shows that we can choose K so that it is shown to be
n-adjacent to K ′ by a collection of ordinary crossings. Thus the corollary follows
from Proposition 4.3. �

By Gabai’s work ([Ga1]), K(0) is irreducible if K is non-trivial and it fibers
over S1 precisely when K is fibered. Combining these facts with Corollary 4.4 and
Theorem 1.2 we obtain Corollary 1.3. Next we give the proof of Corollary 1.4.

Proof of Corollary 1.4. By Theorem 2.3, for every n ∈ N, there exists a non-trivial
knot K that is n-adjacent to the trivial knot and has trivial Alexander polynomial.
Part (b) of the corollary follows immediately from Proposition 4.3. Corollary 1
of [CGLS] states that if K is not a torus knot, then only for integer slopes r,
K(r) can have a cyclic fundamental group. Furthermore, there can be at most two
such integers, and if there are two they have to be successive. Since K has trivial
Alexander polynomial it cannot be a torus knot. Thus part (a) follows immediately
from Corollary 1 of [CGLS]. �

5. Constructing the knots Kn

In this section we give the proof of Theorem 2.3. First let us explain how
Theorem 1.2 follows from Theorem 2.3: Given a fibered knot K ′, for every n ∈ N,
let Kn be a non-fibered knot guaranteed by Theorem 2.3. Since Kn is n-adjacent

to K ′, by [KL1], we have n ≤ 6g(Kn) − 3. Hence
n + 3

6
≤ g(Kn) and parts (a)-(c)

of Theorem 1.2 follow. For part (d), we repeat that it follows by Corollary 8.19 of
[Ga1].

Before we can proceed with the proof of Theorem 2.3 we need some preparation.
First we describe a general construction of a knot K q̄

L from a Seifert surface of
K ′, an n-component string link L, and an n-tuple of integers q̄ := (q1, . . . , qn).
Let S′ ⊂ R3 be a minimum genus Seifert surface for K ′ and set g := genus(S′).
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Suppose that S′ is isotoped into a disc-band form toward a spine Wg, which is a
bouquet of 2g-circles based at a point p. Consider a projection P : R3 −→ R onto
a projection plane R, so that the restrictions of P to K ′ and Wg are both regular.
We will identify Wg with its diagram under the projection P . Let D ⊂ R be a disc
neighborhood of p, which contains no crossing points of Wg. Then, D intersects Wg

in a bouquet of 4g arcs and the rest of Wg consists of 2g arcs outside D. We may
assume that S′ is obtained from Wg by replacing each of the arcs outside D by a
band. Let α ⊂ ∂D be a connected subarc containing Wg ∩∂D and set α′ := ∂D\α.
Let

L : (In, ∂In) −→ (R3 \ D × [0, 1], α′)

be an n-component string link with components L1, . . . , Ln, where In denotes the
disjoint union of n-copies of I := [0, 1] and D = D × { 1

2}. The end points of
Li in α′ can be joined by a subarc ai in α′ and we assume that ai ∩ aj = ∅ if
i �= j. Furthermore, we will assume that the restriction of P on L is regular and
the framing on L defined by parallel copies of P (L) on R is the zero framing. If
each Li is a subarc of α′, we say that the string link L is the trivial string link. A
string link L in R3 \ D × [0, 1] is trivial if it is isotopic to the trivial string link in
R3 \ D × [0, 1] relative to ∂L.

We construct a bouquet of n + 2g circles as follows: For 1 ≤ i ≤ n, let pi, p
′
i

denote the endpoints of P (Li). Connect pi, p
′
i to p by disjointly embedded arcs

αi, α
′
i that lie in D and do not separate any of the arcs in D ∩ Wg. This process

yields a bouquet W1 := W1(L, Wg) of n + 2g circles. Note that W1 contains a
sub-bouquet, say WL, whose circles correspond to the components of L.

Let q̄ := (q1, . . . , qn) be an n-tuple of integers. For the circle in WL that corre-
sponds to the component Li of L we add to W1 an unlinked and unknotted loop
L

′

i, which contains qi kinks. This is done in such a way so that the four arcs of Li

and L
′

i in D appear in alternating order. See Figure 1. This produces a bouquet
W of 2(n + g) circles such that D ∩ W is a bouquet of 4(n + g) arcs and there are
2(n + g) arcs outside D. Now we obtain a surface S q̄

L by replacing each of the arcs
outside D by a band, with twists replacing the kinks contained on the arc. Let
K q̄

L := ∂S q̄
L. If there is no danger of confusion we will simply use KL to denote any

of the knots K q̄
L. Next we prove two lemmas needed for the proof of Theorem 2.3.

Lemma 5.1. Let n > 1. Suppose that the string link L has the following property:
Every proper sublink L′ ⊂ L can be isotoped, relative to ∂L′, in the complement
of Wg in R3 \ D × [0, 1], to the trivial string link in R3 \ D × [0, 1]. Then, K q̄

L is
n-adjacent to K ′ and it shares a common equivalence class of Seifert matrices with
K ′. Thus, in particular, K q̄

L and K ′ have the same Alexander module.

Proof. By construction of S q̄
L, for 1 ≤ i ≤ n, the kinks on L′

i give rise to a general-
ized crossing, say Ci, of order qi on K. Performing the generalized crossing changes
in any non-empty subset of {C1, C2, . . . , Cn} will change K q̄

L to KL′ where L′ is a
proper subset of L. By the assumption on L′, KL′ is isotopic to K ′. Thus K q̄

L is
n-adjacent to K ′.

Let V denote the Seifert matrix of SL corresponding to the spine W , and V ′

denote the Seifert matrix of S′ corresponding to the spine Wg. Since the linking
number of Li with each circle in Wg is zero, and the linking numbers between Li
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L’
1

2L’

2L L
1

D

Wg

Figure 1. An example of a bouquet W and D ∩ W

and Lj are all zero, we see that

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

V ′ 0 0 . . . 0 0
0 0 0 . . . 0 0
0 1 q1 . . . 0 0

. . . . . . . . . . . .
0 0 0 . . . 0 0
0 0 0 . . . 1 qn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus, K q̄
L and K ′ have the same Alexander module. �

For the rest of the section we will assume that L is chosen to satisfy the hypothesis
of Lemma 5.1. The next lemma describes the circumstances under which K q̄

L is
isotopic to K ′.

Lemma 5.2. Let K ′ be a fibered knot. Let L be a string link in R3 \ D × [0, 1] as
in Lemma 5.1. Then, if K q̄

L is isotopic to K ′, L can be isotoped, relative to ∂L, in
the complement of Wg in R3 \ D × [0, 1], to the trivial string link in R3 \ D × [0, 1].

Proof. Suppose that K q̄
L is isotopic to K ′. For i = 1, . . . , n, let Di be a crossing

disc corresponding to Ci and let Ki := ∂Di. We can choose Ki to be a small
circle linking once around the band of S q̄

L corresponding to L′
i. Let K̄ q̄

L denote
the knot obtained from KL by changing all the generalized crossings C1, . . . , Cn,
simultaneously. One can see that K̄L is obtained from K ′ by n finger moves, one for
each component of L. More specifically, to obtain K̄L, for i = 1, . . . , n, one pushes
a small part of K ′ = ∂S′ that contains one endpoint of Li, following Li until one
gets very close to the other endpoint of Li. Then K q̄

L is obtained by allowing these
fingers to intersect K̄L so as to create the generalized crossings C1, . . . , Cn. See
Figure 2. It follows that D1, . . . , Dn are also crossing discs for K ′.

By Theorem 3.1 of [KL1], a Seifert surface for K q̄
L that is of minimum genus

in the complement of K1 ∪ . . . ∪ Kn has to be a minimum genus surface for K q̄
L.

Since we assumed that genus(K q̄
L) = genus(K ′) = g, we conclude that K q̄

L bounds
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L

b

KL K
L

D
D

i

i
i

i

Figure 2. Constructing K q̄
L from K̄L

a Seifert surface of genus g in the complement of K1 ∪ . . . ∪ Kn. Since K̄L is
obtained from K q̄

L by twisting along D1, . . . , Dn, the links K̄L ∪ K1 ∪ . . . ∪ Kn

and K q̄
L ∪ K1 ∪ . . . ∪ Kn have homeomorphic complements. We conclude that K̄L

bounds a Seifert surface Σ of genus g in the complement of K1 ∪ . . . ∪ Kn. Since
Σ is incompressible, by isotopy of Σ relative to ∂Σ = K̄L, we can arrange so that
Σ ∩ Di is a single arc bi properly embedded in Σ. Each arc bi is a “short” subarc
of Li.

Clearly, performing the isotopy from K ′ to K̄L described earlier backwards iso-
topes the graph b1 ∪ . . .∪ bn ∪ K̄L onto L∪K ′. This isotopy brings Σ to a minimal
genus Seifert surface Σ′ of K ′. The string link L lies on Σ′ as proper arcs. Since K ′

is fibered, it admits a unique minimum genus Seifert surface up to isotopy leaving
K ′ fixed pointwise (see, for example, [BZ]). So, Σ′ and S′ are isotopic relative to
K ′. Since L is disjoint from S′, we may assume that during the isotopy from Σ′ to
S′, L never touches S′ except for the last moment when Σ′ and S′ become identical.
The isotopy from L to its image on S′ are in the complement of S′ and relative to
K ′.

On the other hand, by [K1], each crossing Ci must be nugatory. If Ci is a non-
trivial nugatory crossing, we could have the closure of the corresponding component
of L isotoped to a non-trivial summand in the connected sum decomposition of K ′.
This contradicts the assumption that each component of L is trivial as a string
link. Thus, we may assume that the image of L on S′ is a collection of inessential
proper arcs on S′. The position of the end points of this collection of inessential
proper arcs force them to bound disjoint disks on S′. We may assume that each
of these disks lies in D, with one possible exception. For this exceptional disk, the
corresponding proper arc in S′ would run out of D, follow the part of K ′ outside
of D, and come back to D. Then the closure of the corresponding component of L
would have been isotopic to K ′. This is impossible. Thus the string link L can be
isotoped, relative to ∂L, in the complement of Wg in R3 \ D × [0, 1], to the trivial
string link in R3 \ D × [0, 1]. �

Next we turn our attention to the question of whether K q̄
L can be chosen to be

prime. For this we need the following lemma:

Lemma 5.3. Suppose that K ′ is a prime knot and let q̄ be such that |qi| > 1, for
some 1 ≤ i ≤ n. Suppose, moreover, that g(K q̄

L) > g(K ′), where K q̄
L is a knot

associated to L, q̄ as above. If K q̄
L is a composite knot, then K ′ is a summand of

K q̄
L and a 2-sphere realizing the corresponding decomposition of K q̄

L separates L
from Wg.

Proof. Suppose, without loss of generality, that |q1| > 1 and let K1 be a crossing
link for the generalized crossing C1 of K q̄

L. Suppose that K q̄
L has a non-trivial
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connect sum composition K q̄
L = J1#J2 and let T be the corresponding follow-

swallow torus. Since g(K q̄
L) > g(K ′), by Corollary 4.4 of [ST], K1 can be isotoped

in the complement of K q̄
L so that it is disjoint from T . Let V be the solid torus

bounded by T ; by assumption J1 is the core of V . Suppose that K1 lies outside V ;
the case that K1 lies inside V is completely analogous. Then, C1 is a crossing on
J1. The knot obtained from K q̄

L by changing C1 is of the form J ′
1#J2, where J ′

1 is
the knot resulting from J1. By our assumptions on L, J ′

1#J2 = K ′. Since K ′ is
prime it follows that J2 = K ′ and J ′

1 is the unknot. Thus K q̄
L = J1#K ′. Let Y be

a 2-sphere that realizes this connect sum. The surface S′ of K ′ can be isotoped so
that S′ ∩ Y is an arc, say γ, properly embedded on D such that the points in ∂γ
leave the arcs α, α′ ⊂ ∂D in different components of S3 \ Y . Thus, in particular,
Y separates ∂L from Wg. Recall that K q̄

L is the boundary of a surface obtained
from S′ ∪L by replacing each component of L by an appropriate band. Now, since
K q̄

L ∩ Y = ∂γ, it follows that Y separates L from Wg. �

We can now finish the proof of Theorem 2.3:

Proof of Theorem 2.3. Let n > 1. Let S′ be a minimum genus Seifert surface for K ′

and a projection of it on R as fixed earlier. Choose L : (In, ∂In) −→ (R3 \ D, α′)
such that:

(i) Every proper sublink L′ ⊂ L can be isotoped, relatively ∂L′, in the comple-
ment of Wg ∪ K ′ so that it is properly embedded in D.

(ii) L is not trivial.
(iii) There is no 2-sphere that intersects K ′ at exactly two points and separates

L from Wg.
Let q̄ be such that |qi| > 1, for some 1 ≤ i ≤ n. We claim that the knot K := K q̄

L

has properties (a)-(d). Properties (a), (b), follow from (i) and Lemma 5.1. By (ii)
and Lemma 5.2, K is not isotopic to K ′; thus by Theorem 2.2, g(K) > g(K ′). Now
part (d) follows immediately from Lemma 5.3. �

Appendix A. Obstructing symplectic structures

In recent years knots that look fibered to the Alexander polynomial have received
particular attention in symplectic geometry. For example, a problem of current
interest is when a 4-manifold of the form S1 ×M , where M is a 3-manifold, admits
a symplectic structure. It is known that if K is fibered, then S1 × K(0) admits
a symplectic structure and it has been conjectured that the converse is true (see
[Kr1] and the references therein). It is known that the Alexander polynomial of
a knot K obstructs to the existence of symplectic structures on S1 × K(0). More
specifically, it is known that if S1×K(0) admits a symplectic structure, then ∆K(t)
is monic. Furthermore, by a result of Kronheimer ([Kr2]), if g(K) > 1, we must
have m(K) = 0. Combining this with Proposition 3.1, it follows that α(K) is a
secondary obstruction to the existence of symplectic structures on S1 × K(0):

Theorem A.1. Let K ∈ K1. If S1 × K(0) admits a symplectic structure, then
α(K) = 0.

Proof. If g(K) > 1 the conclusion follows immediately from the aforementioned
result of Kronheimer and Proposition 3.1 (b). Suppose that g(K) = 1 and let K ′

be a fibered knot such that ∆K(t) = ∆K′(t) and K
n−→ K ′, for some n > 1. By

Theorem 2.2, g(K) > g(K ′) and, since g(K) = 1, K ′ is the trivial knot. Hence
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∆K(t) is trivial. By Theorem 5.1 of [KL], the only genus one knots that are at
least 2-adjacent to the unknot are 2-bridge knots. But the only 2-bridge knot with
trivial Alexander polynomial is the unknot. Thus K = K ′, and by definition,
α(K) = 0. �

Let Kn, K ′ be knots as in Corollary 3.2. Since K ′ is fibered, S1 ×K ′(0) is sym-
plectic. Since, by construction, α(Kn) > 0, Theorem A.1 implies that S1 × Kn(0)
doesn’t admit symplectic structures. Thus we have examples of non-symplectic
4-manifolds that are not distinguished from symplectic ones by the information
contained in the Alexander polynomial.
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