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A NEW CONSTRUCTION OF 6-MANIFOLDS

AHMET BEYAZ

Abstract. This paper provides a topological method to construct all simply-
connected, spin, smooth 6-manifolds with torsion-free homology using simply-
connected, smooth 4-manifolds as building blocks. We explicitly determine
the invariants that classify these 6-manifolds from the intersection form and
specific homology classes of the 4-manifold building blocks.

0. Introduction

The goal of this paper is to provide an explicit construction of all smooth, closed,
simply-connected, and spin 6-dimensional manifolds with torsion-free homology. A
spin manifold is an oriented manifold such that the second Stiefel-Whitney class,
w2, of the tangent bundle is zero. We construct these 6-dimensional manifolds
using a plumbing construction on 2-disk bundles over a carefully chosen collection
of smooth, simply-connected 4-dimensional manifolds. We then explicitly relate
specific characteristic classes and invariants of these 4-manifolds with the invariants
that classify the 6-manifold. In Section 2, we provide the existence results for the
4-manifolds that we use in the constructions.

Manifolds of dimension 6 have been completely classified by C. T. C. Wall
[Wa-66] using standard algebraic topological invariants.

Theorem 0.1 (Wall). Orientation-preserving diffeomorphism classes of simply-
connected, smooth, spin, closed 6-manifolds M with torsion-free (co)homology cor-
respond bijectively to isomorphism classes of systems of invariants consisting of

(1) a free Abelian group H (= H2(M ; Z)),
(2) a symmetric trilinear map µ : H × H × H → Z defined by µ(x, y, z) =

x ∪ y ∪ z[M ] satisfying µ(x, x, y) ≡ µ(x, y, y) (mod 2) for all x, y ∈ H,
(3) a homomorphism p1 : H → Z such that p1(x) ≡ 4µ(x, x, x) (mod 24) for

all x ∈ H,
(4) a nonnegative integer r = b3/2.

Wall proved Theorem 0.1 by using surgerical methods and homotopy information
associated with these surgeries. In [Wa-66], Wall also proves that every 6-manifold
M is diffeomorphic to M0#b3/2S

3 × S3 with M0 having the same invariants as M
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4410 AHMET BEYAZ

but with r = 0. The manifold M0 is called the core of M . Therefore, without loss
of generality, our constructions deal with those 6-manifolds with r = 0.

An interesting family of simply-connected, spin 6-manifolds are homotopy com-
plex projective 3-spaces. 6-manifolds which are homotopy equivalent to CP 3 are
called homotopy complex projective 3-spaces and each of them is generically de-
noted by HCP 3. Their cohomology rings are isomorphic to that of CP 3. The
diffeomorphism types of HCP 3’s are distinguished by their first Pontrjagin classes
and they are in one to one correspondence with the set of integers. In [MY-66],
Montgomery and Yang give two characterizations of these manifolds. First they
show that the diffeomorphism types of HCP 3’s are in one to one correspondence
with free differentiable actions of S1 on a homotopy S7. It is also shown that
smooth S1-actions on a homotopy S7 which have an S3 as the fixed point set are in
one to one correspondence with the isotopy classes of pairs (S6, K) where K is an
embedding of S3 into S6. These are exactly the smooth 3-knots in S6 (or so-called
Haefliger knots; see [Ha-62] and [Ha-66]). The set of Haefliger knots is also in one
to one correspondence with the integers. The second characterization of HCP 3’s
is based on a surgery on these knots. If we remove a neighborhood B3 × K3 of K
from S6, the remaining part, the knot complement, is diffeomorphic to S2 × B4.
Each HCP 3 can be formed by taking out a neighborhood B3 × S3 of the knot
from S6 and attaching an S2 × B4 to the knot complement. The attaching map f
from S2 × S3 to itself is different from the ordinary one, otherwise the space after
the attachment would be S2 × S4. Montgomery and Yang do not give an explicit
formula for f except for CP 3, but they point out that the action of f on the third
homotopy group of S2×S3 must satisfy two conditions. Let ρ1 : S2×S3 → S2 and
ρ2 : S2 × S3 → S3 be the projection maps of S2 × S3 to S2 and S3, respectively.
Let ϕ : S3 → S2 × S3 be the inclusion map. Then the self-diffeomorphism f of
S2 × S3 must satisfy the following two conditions:

(1) ρ1 ◦ f ◦ ϕ : S3 → S2 represents a generator of π3(S2) (i.e. ρ1 ◦ f ◦ ϕ is the
Hopf fibration).

(2) ρ2 ◦ f ◦ ϕ : S3 → S3 is of degree −1.
In Section 1, we give a new way to construct HCP 3’s. This construction is a

model for the later constructions of all 6-manifolds. We take some 2-disk bundles
on the 4-manifold and then close the boundary to get the HCP 3.

When the second Betti number is greater than one, we need a surgery method
which is called plumbing. Given two spheres Σ1 and Σ2, let Ni be the total space of
the direct sum of two 2-disk bundles ηi1 and ηi2 over Σi. The plumbing on Σ1 and
Σ2 is done by gluing N1 and N2 under a map that takes Σ1 to Σ2 and exchanges
the factors of the direct sum pointwise. If Σ1 and Σ2 are embedded in 6-manifolds
M1 and M2, respectively, then plumbing of M1 and M2 on the spheres Σ1 and Σ2

is done by identifying the normal neighborhoods of the spheres in the respective
manifold. A more detailed description is given in Section 1. Now let us state the
main theorem of the paper.

Main Theorem. Let V be a smooth, closed, simply-connected, spin 6-manifold
with torsion-free homology and b3(V ) = 0. Suppose that H2(V ; Z) is isomorphic to
the direct sum of n copies of Z, each of which is generated by xi (1 ≤ i ≤ n). Also
suppose that p1(V )xi = 24ki + 4µ(xi, xi, xi), where p1 is the first Pontrjagin class
of V and µ is the symmetric trilinear form of V . Then we can find a collection,
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A NEW CONSTRUCTION OF 6-MANIFOLDS 4411

{Xi}, of smooth, closed, simply-connected 4-manifolds with odd intersection forms
Qi and second cohomology classes αij ∈ H2(Xi; Z) (1 ≤ i, j ≤ n) satisfying

(1) the signature of Xi is 8ki + µ(xi, xi, xi),
(2) αii are primitive, characteristic and Qi(αii, αii) = µ(xi, xi, xi),
(3) if i �= j, then αij has a smooth sphere representative in Xi, ¡
(4) Qi(αij , αik) = µ(xi, xj , xk),

so that the manifold M that is constructed by closing the boundaries of the plumbed
2-disk bundles over these 4-manifolds Xi with Euler class αii is diffeomorphic to V .
The plumbing of the respective bundles over Xi is done on the sphere representatives
of αij in Xi and αji in Xj.

Note that α ∈ H2(X; Z) is characteristic if and only if Q(α, β) ≡ Q(β, β) for all
β ∈ H2(X; Z). If H2(X; Z) has no torsion, α is primitive if and only if the subspace
of H2(X; Z) obtained by modding out the subspace generated by α has no torsion
and its rank is b2(X) − 1.

The motivation behind these constructions is to study the symplectic structures
on the 6-manifolds and relate them to the smooth or symplectic topology of the
4-manifolds. As a starting point, we observe that while all the exotic smooth
structures on a given 4-manifold vanish when crossed with the 2-sphere S2, it still
may be the case that the symplectic exoticness is retained. This is hinted at in the
early work of Ruan [Ru-94].

There was not much known about 6-dimensional symplectic topology until now.
There is no general method to distinguish the symplectic structures on a smooth
6-manifold. Also it seems hard to decide whether a smooth 6-manifold is symplectic
or not. In particular, despite their fairly simple topology, it is unknown which of
the HCP 3’s possess a symplectic structure, other than CP 3 itself. With the con-
struction given in this paper, this problem is replaced with a problem of symplectic
surgery. In order to use the results of this paper to study the symplectic struc-
tures on the 6-manifolds considered in Subsections 1.2 and 1.3, first one must show
that plumbing is a symplectic operation. Moreover, we must know which of the
4-manifolds that we use as the building blocks can be chosen to be symplectic. Be-
fore we start building the manifolds, we state a theorem about certain 5-manifolds
that appear as the boundaries of the 6-manifolds in the intermediate steps of our
constructions.

Theorem 0.2 (Duan-Liang ([DL-05])). Assume that X is a closed, simply-
connected, smooth 4-manifold and α ∈ H2(X; Z) is a primitive, characteristic class.
If Xα is the total space of the S1-bundle over X with Euler class equal to α, then
Xα is diffeomorphic to #b2(X)−1S

2 × S3.

1. The constructions

Our constructions use a certain collection of 4-manifolds as the building blocks.
We establish the existence of the appropriate 4-manifolds in Section 2.

1.1. Spin 6-manifolds with b2 = 1. Let X be a closed, simply-connected, smooth
4-manifold and let α ∈ H2(X) be a primitive, characteristic element. A 2-disk
bundle over X is characterized by its Euler class α ∈ H2(X; Z). If Mα is the total
space of the 2-disk bundle ζ over X with Euler class α, then ∂Mα is a circle bundle
over X with its Euler class equal to α. By Theorem 0.2, ∂Mα is diffeomorphic to
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#b2(X)−1S
2×S3. Denote the manifold that is constructed by attaching a B3×S3 to

each component in the connected sum by M . More precisely, we get M by capping
off the boundary of Mα with 	b2(X)−1B

3×S3, the boundary sum of b2(X)−1 copies
of B3 × S3. The invariants of the closed 6-manifold M are given in the following
propositions.

Proposition 1.1. M is simply-connected.

Proof. The homotopy equivalence between Mα and X and the simply-connectedness
of X implies the simply-connectedness of Mα. The boundary of Mα is diffeomor-
phic to #b2(X)−1S

2 ×S3 (Theorem 0.2), which is connected and simply-connected.
Notice that 	b2(X)−1B

3 × S3 is also simply-connected. Then by Van-Kampen’s
theorem, M is simply-connected. �

Proposition 1.2. For M , b0 = b2 = b4 = b6 = 1 and b1 = b3 = b5 = 0.

Proof. Since M is connected, H0(M ; Z) = Z. The abelianization of the funda-
mental group of M is H1(M ; Z). The fundamental group is trivial, so H1(M ; Z)
is trivial. The manifold M is closed and oriented, therefore H6(M ; Z) = Z and
Poincare duality can be applied. This gives H5(M ; Z) = 0. Since there are no
torsion elements, H5(M ; Z) = 0 by the Universal Coefficient theorem. Similarly,
b2(M) = b4(M). Here is a part of the Mayer-Vietoris sequence that applies to the
construction:

0 → H4(Mα; Z) ⊕ H4(�b2(X)−1B
3 × S3; Z) → H4(M ; Z) → H3(#b2(X)−1S

2 × S3; Z)

→ H3(Mα; Z) ⊕ H3(�b2(X)−1B
3 × S3; Z) → H3(M ; Z) → H2(#b2(X)−1S

2 × S3; Z)

→ H2(Mα; Z) ⊕ H2(�b2(X)−1B
3 × S3; Z) → H2(M ; Z) → 0.

(1)

By the homotopy equivalence of Mα and X, H4(Mα; Z) = Z, and by the homo-
topy equivalence of 	b2(X)−1B

3×S3 and a wedge of S3’s, H4(	b2(X)−1B
3×S3) = 0.

Because of this fact, the map below which is induced by the inclusion map is an
isomorphism:

H3(#b2(X)−1S
2 × S3; Z) → H3(Mα; Z) ⊕ H3(	b2(X)−1B

3 × S3; Z).

Therefore, exact sequence (1) splits into three short exact sequences. The first
gives b4(M) = 1 and b2(M) = 1. The second part of the split sequence implies that
H3(M ; Z) = 0. �

Proposition 1.3. H2(M ; Z) = Z has a generator whose pullback in X is α.

Proof. The boundary of Mα is the circle bundle over X with Euler class α. A part
of the Gysin sequence for this circle bundle over X is given below:

(2) 0 π∗
→ H3(#b2(X)−1S

2 × S3; Z) → H2(X; Z) ∪α→ H4(X; Z) π∗
→ 0.

The kernel of ∪α is equal to the image of the second map which is injective. The
image is the quotient of H2(X; Z) by the subspace generated by a class such that
intersection of this class with α is one, because ∪α is surjective. The elements in
the second homology of #b2(X)−1S

2 × S3, given by the Poincare duals of the third
cohomology, are capped with B3’s of 	b2(X)−1B

3 × S3. The integer multiples of α
are among the surviving cohomology elements. The injection of X into M induces
the pullback of the generator x to X as α. �
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Proposition 1.4. M is spin.

Proof. It is enough to calculate the value of w2(M) on the generator PD(x) of
H2(M ; Z) = Z. Since inclusion of H2(Mα) to H2(M) is surjective, w2(M) =
j∗(w2(Mα)), where j is the inclusion map of Mα into M . Let i be the inclusion
map of X into Mα. Writing i∗(TMα) = TX ⊕ ζ, the Whitney sum formula gives
i∗w2(Mα) ≡ w2(X) + α (mod 2) in H2(X; Z2). In H4(M ; Z), PD(x) = i∗PD(α).
Therefore, w2(M)PD(x) ≡ (i∗w2(Mα))PD(x) ≡ (w2(X) + α)PD(α) ≡ 0 mod
2. �

Proposition 1.5. Q(α, α) = µ(x, x, x), where x is the generator of H2(M ; Z).

Proof. The Poincare dual of x ∈ H2(M ; Z) is [i∗X], where i is the inclusion map.
In H2(X; Z), α = i∗x. [X] = i∗PD(x) in H4(X; Z). µ(x, x, x) = (x ∪ x ∪ x)[M ] =
(x∪x)(x∩ [M ]) = (x∪x)[PD(x)] = (x∪x)[i∗X] = (i∗α∪ i∗α)[i∗X] = (α∪α)[X] =
Q(α, α). �

Proposition 1.6. p1(M) = p1(X) + α ∪ α, where p1 is the first Pontrjagin class
of M .

Proof. To see this equality, let’s consider the Whitney sum formula for Pontrjagin
classes. The first Pontrjagin class of M , p1(M), is given as the second Chern class
c2(TM ⊗ C) of the complexification of the tangent bundle of M . Since there is no
contribution to the fourth cohomology of M from 	b2(X)−1B

3×S3, it is safe to make
the calculations in Mα. The Whitney sum formula for the second Chern number of
TMα⊗C is c2(TMα⊗C) = c2(TX⊗C)+c1(TX⊗C)c1(νX|Mα

⊗C)+c2(νX|Mα
⊗C).

The term which is the product of the first Chern classes has order two in the
cohomology ([MS-75], p. 175). The cohomology of X is torsion-free, thus the term
consisting of the product of c1’s is 0. The second Chern class of the complexification
of the 2-disk bundle over X with the Euler class α is α∪α ([MS-75]). Consequently,
p1(M)x = p1(M)(PD(x)) = p1(X)(PD(x))+α∪α(PD(x)) = p1(X)[X]+Q(α, α).
By the Hirzebruch signature theorem for 4-manifolds, this is equal to 3σ(X) + m.
σ(X) = 8k + m implies that p1(M)x = 24k + 4m. �

Using the propositions given above, we prove the theorem below. This theorem
is a special case of the main theorem where b2 = 1.

Theorem 1.7. Let V be any closed, simply-connected, spin 6-manifold with torsion-
free homology and b3(V ) = 0. Assume that H2(V ; Z) is isomorphic to Z which is
generated by x. Also assume that p1(V )x = 24k + 4µ(x, x, x), where p1 is the first
Pontrjagin class of V and µ is the symmetric trilinear form of V . Then we can find
a smooth, closed, simply-connected 4-manifold X with an odd intersection form Q
and a second cohomology class α ∈ H2(X; Z) satisfying

(1) the signature of X is 8k + µ(x, x, x),
(2) α is primitive, characteristic and Q(α, α) = µ(x, x, x),

so that the manifold M that is constructed by the method described above is diffeo-
morphic to V .

Proof. The existence of an appropriate 4-manifold is established below in
Lemma 2.1. Hence, to prove the theorem, we must show that the constructed
manifold M has the same invariants as V .
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The manifold M is simply connected by Proposition 1.1. The manifold M is
spin by Proposition 1.4. As shown above in Proposition 1.2, the Betti numbers
of M and V are the same. Since Q(α, α) = µ(x, x, x), cohomology rings are iso-
morphic by Proposition 1.5. The first Pontrjagin classes of M and V coincide by
Proposition 1.6. By Wall’s theorem (Theorem 0.1) M is diffeomorphic to V . �

Example 1.8. The family of homotopy complex projective 3-spaces forms an in-
teresting collection of 6-manifolds. Some information about these manifolds can
be found in the introduction. HCP 3’s are distinguished by their first Pontrjagin
classes and parametrized by Z. Namely, for all k ∈ Z, the first Pontrjagin class of
the corresponding HCP 3 evaluated on the second cohomology element is 24k + 4.
Take X such that σ(X) = 8k + 1 and α ∈ H2(X; Z) such that α ∪ α = 1. When
we apply the construction, we end up with an HCP 3 with its first Pontrjagin class
evaluated on x equal to 24k + 4. For example, if X is CP 2 and α is h where h
generates H2(CP 2; Z), we get CP 3. Here b2−1 = 0, hence Mα is the Hopf fibration
over CP 2 and ∂Mα is S5. Gluing the 6-disk to the boundary gives CP 3.

Example 1.9. The smooth quintic hypersurface Q in CP 4, which is the zero
set of a degree 5 polynomial, has b3 = 204. Q0, the core of Q, has its second
cohomology group H2(Q0; Z) isomorphic to Z. Let’s denote the generator of this
group by L. µ(L, L, L) = 5 and p1(Q0)L = −100. We can construct Q0 by the
construction given above by taking a 4-manifold with signature equal to −35 and
α with self intersection 5. For example we can choose X as CP 2#36CP 2 and α
as 7h + 3e1 + 3e2 + Σ36

3 ei. This choice is not unique. In fact there are infinitely
many choices. Another choice for X is the degree 5 hypersurface in CP 3 which is
diffeomorphic to #9CP 2#44CP 2.

1.2. Spin 6-manifolds with b2 = 2. In this subsection, we apply a construc-
tion similar to that in Subsection 1.1 in order to get the simply-connected, spin,
torsion-free, smooth 6-manifolds with b2 = 2 and b3 = 0. Let X4

i (i = 1, 2) be
closed, simply-connected, smooth 4-manifolds, let Qi be their respective intersec-
tion forms and let αij ∈ H2(Xi, Z) be primitive elements where j = 1, 2 and αii are
characteristic. Let Mi be the total space of the 2-disk bundle ζi over Xi with Euler
class αii. Suppose that the Poincare dual of each cohomology class, αij (i �= j),
can be represented by an embedded sphere Σij in Xi. Our 6-manifold M is formed
by gluing M1 and M2 over a neighborhood of the Σij in Mi by a diffeomorphism
explained below and then capping off the boundary.

Let νij be the normal 2-disk bundle of the sphere Σij in the 4-manifold Xi, and
let ζij , with total space Nij , be the restriction of ζi to the total space of νij . M1

and M2 are attached along the total spaces N12 and N21. Since Nij is the tubular
neighborhood of Σij in Mi, it is also the total space of the B4-bundle ηij over Σij .

To glue M1 and M2 along N12 and N21, we need them to be diffeomorphic. Since
π2(SO(3)) = Z2, there are only two topologically distinct 4-disk bundles over S2,
determined by their second Stiefel-Whitney class. Thus, for the neighborhoods to
be diffeomorphic, we need w2(η12) = w2(η21). Since the Euler class of ζi is αii,
we have that w2(ηij) = Qi(αij , αii) + Qi(αij , αij) mod 2. However, since αii are
characteristic, we have that w2(ηij) = 0. This implies that the bundles ηij are
trivial and Nij are diffeomorphic to S2 × B4.

To perform our plumbing construction, we need a stronger condition. The normal
bundle ηij of the sphere Σij in Mi can be decomposed as the direct sum of two
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2-disk bundles ([Be-96]). The first is the normal bundle νij of the sphere Σij in
the 4-manifold Xi and the second is the restriction of the 2-disk bundle ζi over Xi

restricted to Σij . In other words, ηij = νij ⊕ ζi|Σij
.

In order to mimic the plumbing of 2-disk bundles over surfaces, we glue Nij by a
diffeomorphism, switching the first and the second bundles of the decomposition of
ηij over Σij with the total space Nij . That is, we identify the normal bundle ν12 of
Σ12 in X1 to the restriction of the 2-disk bundle ζ2 over X2 to Σ21 and vice versa.
All the identifications are made in an orientation-preserving way. In order to do
this, however, we need the 2-disk bundles that are identified to be homotopic. This
then places two conditions on the cohomology classes αij . These conditions are
Q1(α11, α12) = Q2(α21, α21) and Q1(α12, α12) = Q2(α21, α22). Therefore, identify-
ing N12 in M1 and N21 in M2 by pointwise identification of the fibers of ν12 with
ζ2|Σ21 and ν21 with ζ1|Σ12 is a well-defined operation. Let us denote the product
manifold by M12.

Proposition 1.10. M12 is simply-connected.

Proof. The homotopy equivalence between Mi and Xi and the simply-connectedness
of Xi implies the simply-connectedness of Mi. Note that S2 × B4 is also simply-
connected. Since the gluing space for the plumbing operation is path-connected,
by Van-Kampen’s theorem, M12 is simply-connected. �

Proposition 1.11. For M12, b0 = 1, b2 = b2(X1) + b2(X2) − 1, b4 = 2 and
b1 = b3 = b5 = b6 = 0.

Proof. We know that M12 is connected, so H0(M12; Z) = Z. The abelianization
of the fundamental group is H1(M12; Z). The fundamental group is trivial, so
H1(M12; Z) is trivial. Writing the Mayer-Vietoris sequence of this step enables us
to determine the Betti numbers:

0 → H6(M1; Z) ⊕ H6(M2; Z) → H6(M12; Z) → H5(S2 × B4; Z)

→ H5(M1; Z) ⊕ H5(M2; Z) → H5(M12; Z) → H4(S2 × B4; Z)

→ H4(M1; Z) ⊕ H4(M2; Z) → H4(M12; Z) → H3(S2 × B4; Z)

→ H3(M1; Z) ⊕ H3(M2; Z) → H3(M12; Z) → H2(S2 × B4; Z)

→ H2(M1; Z) ⊕ H2(M2; Z) → H2(M12; Z) → 0.

(3)

When we place the known values in sequence (3), it is straightforward to get
b2(M12) = b2(X1)+b2(X2)−1, b4(M12) = 2, b0(M12) = 1 and b1(M12) = b3(M12) =
b5(M12) = b6(M12) = 0. �

By Theorem 0.2, ∂Mi is diffeomorphic to #b2(Xi)−1S
2 ×S3. We now claim that

the boundary of M12 is again diffeomorphic to a connected sum of a number of
S2 × S3’s. More precisely, ∂M12 is diffeomorphic to #b2(X1)+b2(X2)−3S

2 × S3. To
see this, we write the relative homology sequence for the pair (M12, ∂M12):

0 → H5(M12; Z) → H5(M12, ∂M12; Z) → H4(∂M12; Z)

→ H4(M12; Z) → H4(M12, ∂M12; Z) → H3(∂M12; Z)

→ H3(M12; Z) → H3(M12, ∂M12; Z) → H2(∂M12; Z)

→ H2(M12; Z) → H2(M12, ∂M12; Z) → H1(∂M12; Z)

→ H1(M12; Z) → H1(M12, ∂M12; Z) → H̃0(∂M12; Z) = 0.

(4)
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By Poincare-Lefschetz duality and the Universal Coefficient theorem, we see that
H2(M12, ∂M12) is isomorphic to Z⊕Z and H3(M12, ∂M12) = H3(M12). The fourth
homology of M12 consists of the manifolds X1 and X2, so the map H4(∂M12; Z) →
H4(M12; Z) is the zero map. Now, using Poincare duality for ∂M12, it is clear that
the primitive classes that we are using for the plumbing are reflected as essential
second homology classes in the boundary. By using sequence (4), we find the Betti
numbers of ∂M12 to be b0 = b5 = 1, b1 = b4 = 0 and b2 = b3 = b2(X1)+b2(X2)−3.
By the classification of simply-connected, spin, smooth 5-manifolds ([Sm-62]), the
boundary is diffeomorphic to #b2(X1)+b2(X2)−3S

2 × S3.
Once we know the boundary is diffeomorphic to #b2(X1)+b2(X2)−3S

2 × S3, it
is easy to obtain the desired manifold M by capping off the boundary of M12

with 	b2(X1)+b2(X2)−3B
3 × S3. The invariants of M are calculated in the following

propositions.

Proposition 1.12. M is simply-connected.

Proof. The manifold 	b2(X1)+b2(X2)−3B
3 × S3 is simply-connected. By Proposi-

tion 1.10, M12 is also simply-connected. Since the gluing space for the opera-
tion, #b2(X1)+b2(X2)−3S

2×S3, is path-connected, by Van-Kampen’s theorem, M is
simply-connected. �
Proposition 1.13. For M , b0 = b6 = 1, b4 = b2 = 2 and b1 = b3 = b5 = 0.

Proof. M is connected, so H0(M ; Z) = Z. The abelianization of the fundamental
group is H1(M ; Z). The fundamental group is trivial, so H1(M ; Z) is trivial. The
manifold M is closed oriented, therefore H6(M ; Z) = Z and Poincare duality can
be applied. This gives H5(M ; Z) = 0. Since there is no torsion element, by the
Universal Coefficient theorem, H5(M ; Z) = 0. Similarly, b2(M) = b4(M).

The calculation of the remaining Betti numbers of M is done by writing the
Mayer-Vietoris sequence of the steps in the construction. There are two steps.

The first step of the construction is attaching M1 to M2 by the map explained
before Proposition 1.10, the one that plumbs α12 to α21. In Proposition 1.11, the
Betti numbers of M12 are given as b2(M12) = b2(X1) + b2(X2) − 1, b4(M12) = 2,
b0(M12) = 1 and b1(M12) = b3(M12) = b5(M12) = b6(M12) = 0.

The second step is closing the boundary of M12. We calculate the Betti numbers
as b0(M) = b6(M) = 1, b1(M) = b3(M) = b5(M) = 0, and b2(M) = b4(M) = 2 by
using the following Mayer-Vietoris sequence:

0 → H4(M12; Z) ⊕ H4(�b2(X1)+b2(X2)−3B
3 × S3; Z) → H4(M ; Z)

→ H3(#b2(X1)+b2(X2)−3S
2 × S3; Z) → H3(M12; Z) ⊕ H3(�b2(X1)+b2(X2)−3B

3 × S3; Z)

→ H3(M ; Z) → H2(#b2(X1)+b2(X2)−3S
2 × S3; Z)

→ H2(M12; Z) ⊕ H2(�b2(X1)+b2(X2)−3B
3 × S3; Z) → H2(M ; Z) → 0.

(5)

�
The next proposition shows that M is spin.

Proposition 1.14. M is spin.

Proof. The proof is similar to the proof of Proposition 1.4, but in this case there are
two homology classes on which w2(M) must be evaluated. Both of these cohomology
classes are induced by the inclusion of Xi into M . Pulling back everything into
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the respective Xi, it turns out that w2(M)xi ≡ w2(Xi)xi + w2(ζi)xi. Remember
that ζi is the 2-disk bundle over the 4-manifold Xi. In this sum, w2(Xj)xi and
w2(ζj)xi (i �= j) are counted due to the fact that Xi overlaps Xj only on αij which
is already included in xi. Hence w2(Xi)xi and w2(ζ2)xi are already included in
w2(X1)xi and w2(ζ1)xi, respectively, and they are omitted. Therefore, w2(M)xi ≡
w2(Xi)xi + w2(ζi)xi ≡ w2(Xi)xi + Qi(αii, αii) ≡ 0. �

As calculated in Proposition 1.13, H2(M ; Z) is isomorphic to Z⊕Z. This group
is generated by the pushforwards of the cohomology elements α11 and α22 by the
inclusion maps. We denote these two generators x1 and x2, respectively. The inter-
section form is determined by the values of µ(x1, x1, x1), µ(x1, x1, x2), µ(x1, x2, x2)
and µ(x2, x2, x2). The embedding map of Xi into M is given by the composition of
the inclusion maps of fi : Xi → Mi and gi : M12 → M . Using the exact sequence
(3) above, we see that the inclusions H4(Mi) → H4(M12) are injective. The strat-
egy for calculating the intersection numbers of M is to focus on the intersection of
these representatives in M . By transversality, we see that PD(x1) and PD(x2) in
H4(M ; Z) intersect each other (and themselves) in a 2-dimensional subspace.

Note that the representatives of the Poincare duals to the second cohomology
classes x1 and x2 are the embedded copies of the 4-manifolds X1 and X2, respec-
tively. This can be seen from the following argument. The Poincare dual of xi,
PD(x1), is in H4(M ; Z). From the homology calculations above, H4(M ; Z) is gen-
erated by X1 and X2. This means that PD(x1) is a linear combination of X1 and
X2, say sX1 + tX2. The normal bundle of X1 in M has the Euler class α11, which
lies completely in X1. The second cohomology class x1 is the image of α11 in M ,
therefore the evaluation of x1 on X2 is restricted to X1 � X2 (the transversal inter-
section of X1 and X2 in M). This evaluation occurs within X1, hence t = 0. Since
PD(x1) is primitive (due to the fact that x1 is primitive in the second cohomology),
s = 1 and PD(x1) = X1. Similarly, PD(x2) = X2.

Our construction clearly gives that PD(x1) � PD(x2) = X1 � X2 is the repre-
senting (smooth) surface of α12 in X1 and the representing (smooth) surface of α21

in X2. Moreover, Xi has the normal bundle with the Euler class αii in M . As one
of the consequences of the Thom isomorphism theorem ([BT-82], [Br-93], p. 382),
Xi intersects itself on the surface representing αii. From these considerations, we
may conclude the following proposition.

Proposition 1.15. Let M be the 6-manifold constructed above with b2(M) = 2.
Suppose that H2(M ; Z) is generated by x1 and x2. Then µ(x1, x1, x1)=Q1(α11, α11),
µ(x1, x1, x2) = Q1(α11, α12), µ(x1, x2, x2) = Q2(α21, α22) and µ(x2, x2, x2) =
Q2(α22, α22).

Proof. (1) µ(xi, xi, xi) = PD(xi) � PD(xi) � PD(xi) = Xi � Xi � Xi. The
last Xi intersects each of the other two on αii; therefore the intersection of
the three is equal to Q1(αii, αii).

(2) µ(xi, xi, xj) = PD(xi) � PD(xi) � PD(xj) = Xi � Xi � Xj (i �= j). The
first Xi intersects the second Xi on αii and intersects Xj on αij . As a
result, these three intersect each other on the projection of αij on αii in
Xi, which is nothing but Qi(αii, αij). �

Since µ is a symmetric trilinear form, this proposition determines it completely
([OV-95]). The last piece of information we need to know about M is the linear
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form on the second cohomology (i.e. the first Pontrjagin class evaluated on the
second cohomology elements) which we calculate now.

Proposition 1.16. p1(M)xi = 3σ(Xi) + Qi(αii, αii).

Proof. We may write p1(M)xi = p1(M)PD(xi) = p1(M)Xi. The tangent bundle
of M is restricted to Xi as the direct sum of the tangent bundle TX of X and
the normal neighborhood νXi|M of Xi in M . The bundle νXi|M is the B2-bundle
ζi over Xi with Euler class αii. Consequently, as we have seen in Subsection 1.1,
p1(M)Xi = p1(Xi)[Xi] + αii ∪ αii[Xi] = 3σ(Xi) + Qi(αii, αii). �

1.3. Spin 6-manifolds with b2 = n. Using the methods of the previous two sub-
sections, it is possible to construct all simply-connected, spin, torsion-free, smooth
6-manifolds with arbitrary second Betti number and arbitrary trilinear form. (Note:
There are some admissibility conditions for the trilinear forms to be realized by 6-
manifolds. Here, we are not going to study them. See [OV-95] and [Sc-97].) Once
we choose our 4-manifolds with the suitable second homology groups and the in-
tersection forms, whose existence is guaranteed by Lemma 2.2, the construction is
quite similar to the b2 = 2 case. However, not all the manifolds in the intermediate
steps are simply-connected. There are some 1-dimensional homology elements that
are created in the process, so we focus on the formation of these elements.

To construct a 6-manifold M with b2(M) = n, first we take n 4-manifolds Xi

and n primitive characteristic second cohomology classes αii ∈ H2(Xi; Z). We also
take primitive second cohomology classes αij ∈ H2(Xi; Z) (1 ≤ i, j ≤ n, i �= j) each
of which is represented by an embedded sphere. Let Mi be the total space of the
2-disk bundle ζi over Xi with the Euler class αii. Attach Mi to Mj by plumbing
the image of the sphere representative of αij in Mi under the inclusion map of Xi

on the image of the sphere representative of αji in Mj under the inclusion map of
Xj . Since the sphere representatives in any Xi may not be disjoint (in fact, we need
them to have nonempty intersection in general), all the plumbing must be done one
by one.

We form manifolds Mij inductively by doing the plumbing one by one. Here i
and j must be as if ij is an index for the terms of a matrix above the diagonal.
Let M12 be the manifold obtained by attaching M1 to M2 by gluing α12 on α21 as
explained in Subsection 1.2. Similarly, M13 is the manifold obtained by attaching
M3 to M12 on α13 and α31. The manifold M23 is the manifold obtained by attaching
M3 to M1n on α23 and α32. Then Mij is the manifold obtained by plumbing Mj to
the manifold formed in the last step (Mi(j−1) or M(i−1)j) on αij and αji.

n(n−1)
2

manifolds are formed this way. The last one is M(n−1)n.
It is similar to the last subsection to show that the Betti numbers are as follows:

b0(Mij) = b3(Mij) = b5(Mij) = b6(Mij) = 0, b4(Mij) = j and b4(M(n−1)n) = n.
In each step we are losing a second cohomology element, so b2(M(n−1)n) = n(n−1)

2 .
The manifolds M1j are simply-connected by Van-Kampen’s theorem. As the next
proposition shows, starting with M23, the manifolds Mij are not simply-connected
since the operation used is self-plumbing in each step and this operation increases
the first Betti number by one. Consequently, b1(M(n−1)n) = (n−1)(n−2)

2 .

Proposition 1.17. Let W ′ be a 6-manifold obtained by plumbing two embedded
spheres a and b in a 6-manifold W as above. Then b1(W ′) = b1(W ) + 1.
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Proof. We make the attachment over �2S
2, the disjoint union of 2 spheres. If we

remove the plumbed sphere from W ′, what we have is W with the two spheres re-
moved. This manifold is connected and the last part of the Mayer-Vietoris sequence
of this operation is given below:

· · · → H1(�2S
2 × S3; Z) → H1(W ′; Z)⊕H1(S2 × B4; Z) → H1(W −�2S

2 × B4; Z)
(6)

→H̃0(�2S
2×S3; Z)→H̃0(W ′; Z)⊕H̃0(S2×B4; Z)→H̃0(W −�2S

2×B4; Z)→0.

We get the following short sequence (7) by placing the known values to the
sequence (6) above:
(7)
0 → H1(W ′; Z)⊕H1(S2×B4; Z) → H1(W−�2S

2×B4; Z) → H̃0(�2S
2×S3; Z) → 0.

Therefore, b1(W ′) = b1(W ) + 1. �

The generator coming from the increase of the first Betti number is also one of
the generators of the fundamental group of the plumbed manifold. If we remove
the interior of the normal neighborhood of the plumbed sphere from the plumbed
manifold, by Van Kampen’s theorem, the fundamental group remains the same.
This manifold is obtained from the unplumbed manifold by adding an S2 ×S3 × I.
This last one is simply-connected so no relation is introduced in this operation.
Hence the fundamental group gains a free part as a consequence of the plumbing
operation.

The calculation of the homology of the boundary is done using the reduced
relative homology exact sequence of the pair (Mij , ∂Mij). As an instance, sequence
(8) given below is the exact sequence that is associated with one of the plumbings
producing M13.

0 → H5(M13; Z) → H5(M13, ∂M13; Z) → H4(∂M13; Z)

→ H4(M13; Z) → H4(M13, ∂M13; Z) → H3(∂M13; Z)

→ H3(M13; Z) → H3(M13, ∂M13; Z) → H2(∂M13; Z)

→ H2(M13; Z) → H2(M13, ∂M13; Z) → H1(∂M13; Z)

→ H1(M13; Z) → H1(M13, ∂M13; Z) → H̃0(∂M13; Z) = 0.

(8)

By using Poincare-Lefschetz duality for the compact manifolds with boundary,
and placing the known values in sequence (8), we find the Betti numbers of ∂M13

to be b0 = b1 = b4 = b5 = 1 and b2 = b3 = b2(X1) + b2(X2) + b2(X3) − 6.
In exact sequence (8), H1(M13, ∂M13; Z) is trivial, which means that the first

homology element is killed inside the 6-manifold. An induction argument, starting
with M13, shows that all of the first and second homology elements of the bound-
ary are inherited from the manifold itself. Hence, considering the classification of
simply-connected, spin 5-manifolds ([Sm-62]), all second and third homology ele-
ments in the boundary come from a bunch of S2×S3’s that are connected summed
to each other.

For ∂M13, the boundary of the first nonsimply-connected manifold we produced,
the only remaining step is to find a manifold which is connected summed to these
S2 × S3’s. Let us call this manifold N . As before, for the self-plumbing, a new
first homology generator is introduced and it contributes a free generator to the
fundamental group of the boundary. Thus, the manifold N has an infinite cyclic
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fundamental group. By a theorem of Browder ([Br-66]), we can split this manifold
as Y ∪X×S0 (X × I), where X and Y are simply-connected manifolds in dimension
4 and 5, respectively. Note that Y is a cobordism of X with itself. H̃i(Y ) = 0
for i �= 4. If Y had a nonzero third homology element, X × I would contribute a
fourth homology element to N which is bounded by the third homology element of
Y . This element could only be a multiple of the fundamental class which is already
in the fourth homology of Y by the inclusion of the boundary. Consequently, Y has
trivial third homology. If Y had a nonzero second homology element, this element
would be an element in the second homology of X and hence an element of X × I.
After gluing, this would be a nontrivial element in the second homology group of N .
However, N has no nontrivial second homology elements. Hence by the Hurewicz
theorem, Y is homotopic to X, i.e. Y is an h-cobordism. All obstructions to the
h-Cobordism theorem lies in the degree two and three homology in dimension 5.
Therefore, Y is homotopy equivalent to X×I and the manifold N that we are after
is homotopy equivalent to S1 ×S4. By a result of Shaneson for the smooth, closed,
orientable 5-manifolds with infinite cyclic fundamental group ([Sh-68], Theorem on
p. 297), this manifold is diffeomorphic to S1 × S4. In each plumbing, this new 5-
manifold must have its first and fourth homology groups isomorphic to Z. During
the plumbing, the boundary changes away from those S1 × S4’s introduced before
this step. Therefore, in each step, an S2 × S3 is replaced by an S1 × S4.

The S4 in the boundary, formed during the plumbing, bounds a fifth homology
element in the 6-manifold, hence it dies in the 6-manifold we constructed. Closing
the boundary with the boundary sum of B3 × S3’s and B2 × S4’s gives a closed
manifold M , whose Betti numbers are given by b0(M) = b6(M) = 1, b2(M) =
b4(M) = n, b1(M) = b5(M) = b3(M) = 0.

Since αii is characteristic, M must be spin as shown in the following proposition.

Proposition 1.18. M is spin.

Proof. The proof is similar to the proof of Proposition 1.14, but in this case there
are n homology classes on which w2(M) must be evaluated. All of these cohomol-
ogy classes xi are induced by the inclusion of Xi into M . Pulling back everything
into the respective Xi, it turns out that w2(M)xi ≡

∑
j w2(Xj)xi +

∑
j w2(ηj)xi.

Remember that ηi is the 2-disk bundle over the 4-manifold Xi. In this sum,
w2(Xj)xi and w2(ηj)xi (i �= j) can be omitted due to the fact that Xi overlaps Xj

only on αij which is already included in xi. As a result, w2(Xi)xi and w2(η2)xi

are already included in w2(X1)xi and w2(η1)xi, respectively. Thus, w2(M)xi ≡
w2(Xi)xi + w2(ηi)xi ≡ w2(Xi)xi + Qi(αii, αii) ≡ 0. �

The intersection form of M is given in the following proposition.

Proposition 1.19. Let M be the 6-manifold constructed above with b2 = n and let
µ be its trilinear form. Then µ(xi, xj , xk) = Qi(αij , αik).

Proof. The proof is essentially the same as in Subsection 1.2. The intersection
µ(xi, xj , xk) can be written as PD(xi) � PD(xj) � PD(xk) which is equal to
Xi � Xj � Xk. The embedded copy of Xi intersects the embedded copy of Xj on
αij . It also intersects Xk on αik. Therefore these three intersect each other on the
projection of αij on αik in Xi which is nothing but Qi(αij , αik). �

This last proposition reflects the fact that we must choose Xi and the cohomology
classes such that Qi(αij , αik) = Qj(αji, αjk) for all i, j, k.
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The first Pontrjagin class acts on the second cohomology as follows.

Proposition 1.20. p1(M)xi = 3σ(Xi) + Qi(αii, αii).

Proof. The proof is similar to the proof of Proposition 1.16 in Subsection 1.2. We
may write p1(M)xi = p1(M)PD(xi) = p1(M)Xi. The tangent bundle of M is
restricted to the embedded copy of Xi as the direct sum of the tangent bundle TX
of X and the normal neighborhood νXi|M of Xi in M . The bundle νXi|M is the B2-
bundle over Xi with Euler class αii. Therefore, as we have seen in Subsection 1.1
(the paragraph before Example 1.8), p1(M)Xi = p1(Xi)[Xi] + αii ∪ αii[Xi] =
3σ(Xi) + Qi(αii, αii). �

We have proved the main theorem of this paper.

Main Theorem. Let V be a smooth, closed, simply-connected, spin 6-manifold
with torsion-free homology and b3(V ) = 0. Suppose that H2(V ; Z) is isomorphic
to the direct sum of n copies of Z, each of which is generated by xi. Also suppose
that p1(V )xi = 24ki + 4µ(xi, xi, xi), where p1 is the first Pontrjagin class of V
and µ is the symmetric trilinear form of V . Then we can find a collection {Xi} of
smooth, closed, simply-connected 4-manifolds with odd intersection forms Qi and
second cohomology classes αij ∈ H2(Xi; Z) (1 ≤ i, j ≤ n) satisfying

(1) the signature of Xi is 8ki + µ(xi, xi, xi),
(2) αii are primitive, characteristic and Qi(αii, αii) = µ(xi, xi, xi),
(3) if i �= j, then αij has a smooth sphere representative in Xi,
(4) Qi(αij , αik) = µ(xi, xj , xk),

so that the manifold M that is constructed by closing the boundaries of the plumbed
2-disk bundles over these 4-manifolds Xi with Euler class αii is diffeomorphic to V .
The plumbing of the respective bundles over Xi is done on the sphere representatives
of αij in Xi and αji in Xj.

2. The building blocks

In this section, we prove the fact that 4-manifolds that are used as the building
blocks of the constructions in Section 1 exist. We state two existence results. The
first lemma is a special case of the second, however we include it here because it
makes reading the proof of the latter lemma easier.

Lemma 2.1. For all (k, m) ∈ Z⊕Z, there exists a closed, simply-connected, smooth
4-manifold X with an odd intersection form Q and a primitive characteristic coho-
mology class α ∈ H2(X; Z) such that Q(α, α) = m and the signature, σ(X), of X
is 8k + m.

Proof. The strategy of the proof is to find the manifolds for (k, 0) and (0, m) and
then give the remaining ones as the connected sums of these manifolds. Note that
the signature of a connected sum is equal to the sum of signatures of the com-
ponents. The characteristic class αk,m of the resulting manifold after connected
summing is taken as the sum of the characteristic classes of each component man-
ifold.

(1) (k, m) = (0, 0): Take X0,0 = CP 2#CP 2 and α0,0 = h + e, where h is
the generator of H2(CP 2; Z) and e is the generator of H2(CP 2; Z). Then
Q(α0,0, α0,0) = 0 = m and σ(X0,0) = 8k + m = 0.
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(2) (a) m = 0, k > 0: Assume that Xk,m = #16k+1CP 2#8k+1CP 2 and αk,0 =∑16k+1
i=1 hi +

∑k
i=1 3ei +

∑8k+1
k+1 ei, where hi is the generator of the

second cohomology group of the ith copy of CP 2and ei is the generator
of the second cohomology group of the ith copy of CP 2. Then the
signature of Xk,0 is 8k = 8k + m and Q(αk,m, αk,m) = 0 = m.

(b) m = 0, k < 0: Let Xk,m = #−8k+1CP 2#−16k+1CP 2 and αk,m =∑−16k+1
i=1 ei +

∑−k
i=1 3hi +

∑−8k+1
−k+1 hi, where hi is the generator of the

second cohomology group of the ith copy of CP 2and ei is the generator
of the second cohomology group of the ith copy of CP 2. Then the
signature of Xk,m is 8k = 8k + m and Q(αk,m, αk,m) = 0 = m.

(3) (a) k = 0, m > 0: Take Xk,m = #mCP 2 and αk,m =
∑m

i=1 hi, where hi is
the generator of the second cohomology group of the ith copy of CP 2.
The signature of Xk,m is m and Q(αk,m, αk,m) = m.

(b) k = 0, m < 0: Take Xk,m = #−mCP 2 and αk,m =
∑−m

i=1 ei, where
ei is the generator of the second cohomology group of the ith copy of
CP 2. The signature of Xk,m is m and Q(αk,m, αk,m) = m.

(4) For arbitrary (k, m), let Xk,m be chosen as the connected sum of Xk,0 and
X0,m and αk,m = αk,0 + α0,m. �

Our second existence result is given by the following lemma.

Lemma 2.2. Given (k, n) ∈ Z ⊕ Z+ and a symmetric matrix A = {Aij} ∈
GL(n; Z), it is always possible to find a closed, simply-connected, smooth 4-manifold
X with an odd intersection form Q and n distinct primitive second cohomology
classes of X satisfying the following conditions:

(1) one of the cohomology classes, α = α1, is characteristic, and Q(α, α) =
A11,

(2) the (n − 1) remaining cohomology classes {αi}n−1
i=2 are represented by em-

bedded spheres,
(3) the intersection numbers of the n cohomology classes are given by Q(αi, αj)

= Aij,
(4) the signature, σ(X), of X is equal to 8k + Q(α, α).

Proof. When n = 1, the proof is given in Lemma 2.1. Let n > 1. We give the
homeomorphism type of X by writing it as a connected sum of CP 2’s and CP 2’s.
There is a distinguished class α which is characteristic. For each αi, we find a
manifold Xi corresponding to αi. Then we glue all Xi together according to the
intersection of αi with the other classes. We start gathering the pieces of X by
considering the difference between Q(αi, αi) and Q(αi, α). This number is always
even (since α is characteristic). Let Q(αi, α) − Q(αi, αi) be equal to 2ki. The
manifold Xi and the class α are formed by the following algorithm:

(1) This step is to adjust the intersection with the characteristic class α. If ki

is positive, then Xi = CP 2, αi = hi and α = (2ki + 1)hi, where hi is the
generator of the second cohomology group of CP 2. If ki is negative, then
Xi = CP 2, α = (2ki + 1)e and αi = ei. Here ei is the generator of the
second cohomology of CP 2.

(2) Now we adjust the intersection number with other cohomology classes. If
Q(αi, αj) is negative, Xi and αi stay as they are. If Q(αi, αj) is positive,
then add Q(αi, αj) copies of CP 2’s to Xi by connected summing, and add
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the generators of second cohomologies of the new CP 2’s to αi. The same
number of CP 2’s are also added to Xj but αj is not changed.

(3) To reach the self-intersection Q(αi, αi) of αi, connect sum Xi with a number
of CP 2’s or CP 2’s, and add the generators of the new cohomology to αi.
The number of the new manifolds that are added is determined by the
self-intersection of αi at the end of the last step.

Now we have a collection of manifolds {Xi}. The next step is to glue all these
manifolds by identifying Xi and Xj on the CP 2’s added to Xi and Xj in the second
step of the algorithm above. In this manifold, the characteristic class α is given
by

∑
(2ki + 1)hi +

∑
(2ki + 1)ei. As a result, we have a manifold with n primitive

cohomology classes. The intersection numbers of these classes were adjusted except
for Q(α, α). To obtain the desired manifold, we need to adjust the self-intersection
of α and the signature. We manage the self-intersection of α by adding CP 2’s
(or CP 2’s) if necessary. α is changed by the addition of a bunch of h’s (or e’s).
Finally, we reach the signature by connected summing with the manifolds used in
the proof of Lemma 2.1. The contribution of these manifolds to α does not change
the self-intersection of α.

The projection of αi in each CP 2 (CP 2) can be represented by a sphere. This is
because it is nothing but a line h in CP 2 (exceptional sphere e in CP 2). Connecting
these spheres linearly by thin tubes, we can represent all the αi’s by embedded
spheres. �
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