TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 360, Number 8, August 2008, Pages 4287-4304 S 0002-9947(08)04475-9 Article electronically published on March 12, 2008

CONTINUED FRACTIONS WITH CIRCULAR TWIN VALUE SETS

LISA LORENTZEN

ABSTRACT. We prove that if the continued fraction $K(a_n/1)$ has circular twin value sets $\langle V_0, V_1 \rangle$, then $K(a_n/1)$ converges except in some very special cases. The results generalize previous work by Jones and Thron.

1. INTRODUCTION AND MAIN RESULT

A pair $\langle V_0, V_1 \rangle$ of sets from $\widehat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ is called a pair of *twin value sets* for the continued fraction

(1.1)
$$K(a_n/1) := \frac{a_1}{1} + \frac{a_2}{1} + \frac{a_3}{1} + \dots := \frac{a_1}{1 + \frac{a_2}{1 + \frac{a_3}{1 + \dots}}}, \quad a_n \in \mathbb{C} \setminus \{0\}$$

if both V_k and its complement V_k^c in $\widehat{\mathbb{C}}$ are non-empty for k = 0, 1 and

(1.2)
$$a_{2n-1}/(1+V_1) \subseteq V_0$$
 and $a_{2n}/(1+V_0) \subseteq V_1$ for $n = 1, 2, 3, ...$

Note that we do not require $a_{2n+k} \in V_{k-1}$ for k = 1, 2 as was done in the work by Jones and Thron; see for instance their book [7, p. 64]. For given value sets we further define the *corresponding element sets* $\langle E_1, E_2 \rangle$ by

(1.3)
$$E_1 := \{ a \in \mathbb{C}; \ a/(1+V_1) \subseteq V_0 \}, \quad E_2 := \{ a \in \mathbb{C}; \ a/(1+V_0) \subseteq V_1 \}.$$

Here, by definition, $0 \notin E_1$ if $-1 \in \overline{V_1}$ (the closure of V_1 in $\widehat{\mathbb{C}}$) and $0 \notin E_2$ if $-1 \in \overline{V_0}$. The twin element sets $\langle E_1, E_2 \rangle$ are *true* if $E_k \setminus \{0\} \neq \emptyset$ for k = 1 and 2. We also say that $\langle V_0, V_1 \rangle$ are twin value sets for $\langle E_1, E_2 \rangle$. For convenience we shall always let $V_2 := V_0$, so that $E_k = \{a \in \mathbb{C}; a/(1 + V_k) \subseteq V_{k-1}\}$ for k = 1, 2.

In this paper we restrict the value sets to be *closed circular domains*; that is, they are closures of simply connected, open, non-empty domains on the Riemann sphere $\widehat{\mathbb{C}}$, bounded by a generalized circle. The points $0, -1, \infty$ are special in the classical continued fraction theory. (See (1.6).) We shall therefore distinguish between closed domains V where

- $\infty \notin V$ (disks),
- ∞ on the boundary ∂V of V (half planes),
- ∞ in the interior V° of V (complements of disks).

©2008 American Mathematical Society

Received by the editors December 4, 2005 and, in revised form, August 16, 2006. 2000 *Mathematics Subject Classification*. Primary 40A15.

We address the problem: when does $K(a_n/1)$ from $\langle E_1, E_2 \rangle$ (i.e. all $a_{2n-1} \in E_1$ and all $a_{2n} \in E_2$) converge? By convergence we mean that the sequence of *approximants* $\{c_n\}$ of $K(a_n/1)$ converges to a $c \in \widehat{\mathbb{C}}$, where

(1.4)
$$c_n := S_n(0) \quad \text{and} \quad S_n(z) := \frac{a_1}{1} + \frac{a_2}{1} + \dots + \frac{a_n}{1+z},$$

i.e., $S_n := s_0 \circ s_1 \circ s_2 \circ \dots \circ s_n; \quad s_0(z) := z, \ s_k(z) := \frac{a_k}{1+z}$

We say that the even (odd) part of $K(a_n/1)$ converges if $\{c_{2n}\}$ ($\{c_{2n+1}\}$) converges in $\widehat{\mathbb{C}}$. A number of papers has been written on this topic. See for instance [7, chapter 4] and the references therein. In particular, the paper [6] by Jones and Thron, published in this journal, gives a very nice and useful presentation of sufficient conditions for convergence. However, these results can be improved, as we shall show in this paper. The very special case where $0 \in \partial V_0$ and $-1 \in \partial V_1$ or vice versa still needs some extra attention, though (see Example 2.9). We shall prove:

Theorem 1.1. Let $\langle V_0, V_1 \rangle$ be closed circular twin value sets with corresponding element sets $\langle E_1, E_2 \rangle$ for the continued fraction $K(a_n/1)$. Then the following statements are true:

- A. Let V_0 and V_1 be disks and $E_2^{\circ} \neq \emptyset$. Then $K(a_n/1)$ converges to a $c \in V_0$.
- B. Let V_0 be a disk, V_1 be a half plane and $E_2^{\circ} \neq \emptyset$. Then $K(a_n/1)$ converges to $a \ c \in V_0$.
- C. Let V_0 be a disk and V_1 be the complement of a disk with respective centers C_k and radii R_k such that $|C_k|R_{k+1} \neq R_k|1+C_{k+1}|$ for k = 0 or k = 1 and $0 \notin \partial^{\dagger}V_1 := \partial V_1 \cap (-1 \partial V_0)$. Then the even part of $K(a_n/1)$ converges to $a \ c \in V_0$. If moreover $-1 \notin V_0 \setminus (-1 V_1^\circ)$, then $K(a_n/1)$ itself converges to c.
- D. Let V_0 and V_1 be half planes with $0, -1 \notin \partial^{\dagger} V_1$. Then the even and odd parts of $K(a_n/1)$ converge to finite values $\in V_0$. Moreover, $K(a_n/1)$ itself converges if and only if

(1.5)
$$\sum_{n=1}^{\infty} |b_n| = \infty \quad \text{where } b_{2n} := \frac{a_1 a_3 \cdots a_{2n-1}}{a_2 a_4 \cdots a_{2n}}, \quad b_{2n+1} := \frac{a_2 a_4 \cdots a_{2n}}{a_1 a_3 \cdots a_{2n+1}}.$$

Remarks 1.2.

- 1. Since $K_{n=1}^{\infty}(a_n/1)$ converges in $\widehat{\mathbb{C}}$ if and only if $K_{n=2}^{\infty}(a_n/1)$ converges in $\widehat{\mathbb{C}}$, we may interchange V_0 and V_1 .
- 2. Theorem 1.1 also covers cases such as, for instance, V_0 a half plane and V_1 a complement of a disk, since $\langle V_0, V_1 \rangle$ are twin value sets for the continued fraction $K(a_n/1)$ if and only if $\langle -1 V_1^c, -1 V_0^c \rangle$ are twin value sets for $K(a_n/1)$ (see Lemma 4.1). This was also pointed out by Jones and Thron in [6]. Indeed, if V_0 or V_1 contains more than one element, then $Y_0 := V_0 \setminus (-1 V_1)^\circ \neq \emptyset$ and $Y_1 := V_1 \setminus (-1 V_0)^\circ \neq \emptyset$, so also $\langle Y_0, Y_1 \rangle$ are twin value sets for $K(a_n/1)$, [9, prop. 5.4].
- 3. It is a well established fact [7, thm. 4.53, p. 128] that (1.5) holds if $\{a_n\}$ has a bounded subsequence.

The classical convergence concept requires that $S_n(0) \rightarrow c$, where by (1.4),

(1.6)
$$c_n = S_{n-1}(a_n) = S_n(0) = S_{n+1}(\infty) = S_{n+2}(-1) = S_{n+3}(-1 - a_{n+3}).$$

In [2] a more general concept of convergence was introduced: we require that there exist two sequences $\{u_n\}$ and $\{v_n\}$ from $\widehat{\mathbb{C}}$ such that

(1.7)
$$\lim S_n(u_n) = \lim S_n(v_n) = c \quad \text{and} \quad \liminf d(u_n, v_n) > 0,$$

where d(*,*) denotes the chordal metric on the Riemann sphere $\widehat{\mathbb{C}}$; i.e.,

(1.8)
$$d(z,w) = \frac{2|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}} \quad \text{if } z,w \in \mathbb{C}$$

with the natural limit forms if z and/or w is $= \infty$. If (1.7) holds, we say that $K(a_n/1)$ converges generally to c. Then, by [2], there exists an exceptional sequence $\{z_n^{\dagger}\} \subseteq \widehat{\mathbb{C}}$ such that

(1.9)
$$\lim S_n(z_n) = c \quad \text{whenever} \quad \liminf d(z_n, z_n^{\dagger}) > 0.$$

If $c \neq \infty$, we can for instance use $z_n^{\dagger} := \zeta_n := S_n^{-1}(\infty)$ for all n. Or more generally, $\{S_n^{-1}(q)\}$ is an exceptional sequence for every $q \neq c$, also if $c = \infty$. All the exceptional sequences have the same asymptotic behavior.

Classical convergence implies general convergence whereas the converse does not hold. Indeed, there are generally convergent continued fractions $K(a_n/1)$ where $\{z_n^{\dagger}\}$ has limit points at 0, -1 and ∞ which destroy the classical convergence of $K(a_n/1)$. However, if $K(a_n/1)$ also converges in the classical sense, then it converges to the same value. It is also clear that if the even and odd parts of $K(a_n/1)$ converge to distinct values in the classical sense, then they also converge generally to the same two distinct values.

One might expect to get a nicer theorem with general convergence. However, Theorem 1.1 is already good, except for the disk – complement of disk case. For this case it really pays off to change over to general convergence (here B(C, R)) denotes a closed circular disk with center at $C \in \mathbb{C}$ and radius R > 0):

Theorem 1.3. Let $V_0 := B(C_0, R_0)$ and $V_1 := \overline{B(C_1, R_1)^c}$ be twin value sets for the continued fraction $K(a_n/1)$, where $0 \notin \partial^{\dagger}V_1 := \partial V_1 \cap (-1 - \partial V_0)$ and $|C_k|R_{k+1} \neq R_k|1 + C_{k+1}|$ for k = 0 or k = 1. Then $K(a_n/1)$ converges generally to a $c \in V_0$.

The final result in this section describes cases where classical convergence follows from general convergence. We still use the notation $\zeta_n := S_n^{-1}(\infty)$.

Theorem 1.4. Let $\langle V_0, V_1 \rangle$ be closed twin value sets for the continued fraction $K(a_n/1)$ with $(V_0 \cup V_1)^{\circ} \neq \emptyset$. Let $K(a_n/1)$ converge generally to c, let $q \neq c$ and let \tilde{Z}_k be the set of limit points for $\{S_{2n+k}^{-1}(q)\}$. Then the following statements hold for fixed $k \in \{1, 2\}$.

- A. $c \in V_0 \setminus (-1 V_1^\circ)$ and $\tilde{Z}_k \subseteq (-1 V_{k-1}) \setminus V_k^\circ$. B. If $-1 \notin \tilde{Z}_k$ or $0 \notin \tilde{Z}_k$, then $S_{2n+k}(0) \to c$. If $\infty \notin \tilde{Z}_k$, then $S_{2n+k-1}(0) \to C$.
- C. Let $\varepsilon > 0$ and $n_0 \in \mathbb{N}$. If for each $n \ge n_0$, either $d(a_{2n+k-1}, \tilde{Z}_k) \ge \varepsilon$ or $d(-1-a_{2n+k+2},\tilde{Z}_k) \ge \varepsilon$, then $S_{2n+k-1}(0) \to c$.
- D. If V_0 is bounded, then $\{\zeta_n\}$ is an exceptional sequence for $\{S_n\}$ and $S_{2n}(0)$ $\rightarrow c$.
- E. If $-1 \notin V_0 \setminus (-1 V_1^\circ)$, then $S_{2n+1}(0) \to c$.

In section 2 we shall give some explicit expressions for the corresponding element sets $\langle E_1, E_2 \rangle$ and some stronger convergence results. Section 3 contains some intermediate results, and in section 4 we prove the results in sections 1 and 2.

Notation. We shall use the notation introduced so far, plus some extra. For convenience we list a few of them here:

- A
 ^o, ∂A and A^c are the closure, the interior, the boundary and the complement of a set A in C
 ^c.
- \mathbb{D} is the open unit disk $\{z \in \mathbb{C}; |z| < 1\}$.
- $[z_1, z_2]$ is the closed line segment between the two points z_1 and z_2 in \mathbb{C} . Moreover, $a[r, \infty) := \{z = ua; u \ge r\}$ for $a \in \mathbb{C} \setminus \{0\}$ and $r \in \mathbb{R}$.
- $B(a,r) := \{z \in \mathbb{C}; |z-a| \le r\}$ and $B_d(a,r) := \{z \in \widehat{\mathbb{C}}; d(z,a) \le r\}$ for $a \in \mathbb{C}$ and r > 0.
- $H(r, \alpha)$, where $r, \alpha \in \mathbb{R}$, denotes the closed half plane with $L := e^{i\alpha}[r, \infty) \subseteq H(r, \alpha)$, whose boundary $\partial H(r, \alpha)$ is the line through $r e^{i\alpha}$ orthogonal to L.
- $\operatorname{rad}(A)$ is the euclidean radius of a circular set $A \subseteq \widehat{\mathbb{C}}$. $\operatorname{rad}(A) := \infty$ if $\infty \in \overline{A}$.
- diam(A) is the euclidean diameter of a set $A \subset \widehat{\mathbb{C}}$.
- dist(z, A) (d(z, A)) denotes the euclidean (chordal) distance between a point $z \in \widehat{\mathbb{C}}$ and a set $A \subseteq \widehat{\mathbb{C}}$, and dist(A, B) (d(A, B)) denotes the euclidean (chordal) distance between two sets $A, B \subseteq \widehat{\mathbb{C}}$.
- For convenience, $V_2 := V_0$, $W_2 := W_0$, $E_3 := E_1$, $E_0 = E_2$, etc. for twin quantities; that is, they are counted modulo 2.
- s_m denotes the linear fractional transformation $a_m/(1+z)$, $s_m^*(z) := a_m^*/(1+z)$ and so on, and $S_n := s_1 \circ s_2 \circ \cdots \circ s_n$.
- $\partial^{\dagger}V_k := \partial V_k \cap (-1 \partial V_{k+1})$ and $\partial^*V_k := \partial V_k \cap (-1 V_{k+1})$ for k = 0, 1. Clearly, $\partial^{\dagger}V_0 = -1 - \partial^{\dagger}V_1$, and the condition $0 \notin \partial V_k$, $-1 \notin \partial V_{k+1}$ can be written $0 \notin \partial^{\dagger}V_k$, or equivalently, $-1 \notin \partial^{\dagger}V_{k+1}$.
- $\zeta_n := S_n^{-1}(\infty), c_n := S_n(0)$ and Z_k is the (closed) set of limit points for $\{\zeta_{2n+k}\}.$
- $W_0 := -1 \overline{V_1^c}$, $W_1 := -1 \overline{V_0^c}$, $Y_0 := V_0 \setminus (-1 V_1)^\circ$ and $Y_1 := V_1 \setminus (-1 V_0)^\circ$ so that $\langle W_0, W_1 \rangle$ and $\langle Y_0, Y_1 \rangle$ are alternative closed twin value sets (Remark 1.2.2).
- $\sum' P_n < \infty$ shall mean that there exists an $n_0 \in \mathbb{N}$ such that $\sum_{n=n_0}^{\infty} P_n < \infty$ for the non-negative numbers P_n . Hence $P_n = \infty$ is possible for finitely many n.

2. Explicit element sets and more detailed convergence criteria

In applications it is useful to know the corresponding element sets $\langle E_1, E_2 \rangle$ explicitly. We have therefore listed these sets below, along with some more specific convergence criteria for continued fractions $K(a_n/1)$ with circular twin value sets. Of course we want as few extra conditions as possible, but some situations have to be treated separately:

• $a_n \to \infty$. The if and only if part of Theorem 1.1D shows that extra conditions are needed in this case. This is true whether we want classical or general convergence.

CONTINUED FRACTIONS

- $a_{2n-1} \rightarrow \tilde{a}_1 \in E_1 \setminus \{0\}$ and $a_{2n} \rightarrow \tilde{a}_2 \in E_2 \setminus \{0\}$ where $\tilde{s}_1 \circ \tilde{s}_2$ is an elliptic transformation. If $|a_{2n+k} \tilde{a}_k| \rightarrow 0$ fast enough for k = 1 and k = 2, then $K(a_n/1)$ diverges generally. $\tilde{s}_1 \circ \tilde{s}_2$ is elliptic if $\tilde{a}_1 = -w_0w_1$ and $\tilde{a}_2 = -(1+w_0)(1+w_1)$ for some $w_0, w_1 \in \mathbb{C}$ with $w_0(1+w_1) = e^{i\theta}w_1(1+w_0)$ where $e^{i\theta} \neq 1$, [1]. This can happen only if both $\tilde{s}_1(V_1) = V_0$ and $\tilde{s}_2(V_0) = V_1$. (See also Lemma 4.2.)
- $\tilde{a}_k := 0 \in \overline{E_k}$ and $\tilde{a}_{k+1} := -1 \in E_{k+1}$ for k = 1 or 2. Also now $K(a_n/1)$ with $a_{2n+k} \to \tilde{a}_k$ for k = 1, 2 may converge or diverge depending on how $\{a_{2n+k}\}$ approaches \tilde{a}_k (see Example 2.9).

The disk - disk case.

Let $V_k := B(C_k, R_k)$ for some $C_k \in \mathbb{C}$ and $R_k > 0$ for k = 0, 1. Evidently $E_k = \emptyset$ if $-1 \in V_k$, so

(2.1)
$$|1 + C_k| > R_k \text{ for } k = 0, 1$$

is a necessary condition for $\langle E_1, E_2 \rangle$ to be *true* element sets corresponding to $\langle V_0, V_1 \rangle$. Then we get the following generalization of [6, thm. 5.1]:

Theorem 2.1. Let $V_k := B(C_k, R_k)$ for k = 0, 1 where $C_k \in \mathbb{C}$ and $R_k > 0$ satisfy (2.1) and

$$(2.2) |C_{k-1}|R_k \le |1 + C_k|R_{k-1}$$

for k = 1, 2. If (2.2) holds with equality for both k = 1 and k = 2, we further assume that $\sigma := \tilde{s}_1 \circ \tilde{s}_2$ is non-elliptic, where

(2.3)
$$\tilde{a}_k := C_{k-1}(1+C_k)(1-R_k^2/|1+C_k|^2).$$

Then every continued fraction $K(a_n/1)$ from $\langle E_1, E_2 \rangle$ converges, where

(2.4)
$$E_k := \left\{ a \in \mathbb{C}; \ |a - \tilde{a}_k| + \frac{R_k}{|1 + C_k|} |a| \le \frac{R_{k-1}}{|1 + C_k|} (|1 + C_k|^2 - R_k^2) \right\}.$$

Remarks 2.2.

- 1. $\langle E_1, E_2 \rangle$ are the element sets corresponding to $\langle V_0, V_1 \rangle$. They are true element sets if and only if (2.1) and (2.2) hold. Condition (2.2) is therefore only present to make $\langle E_1, E_2 \rangle$ true when (2.1) holds. E_k is a one-point set if and only if $E_k = \{\tilde{a}_k\}$ as given by (2.3). This happens if and only if $|C_{k-1}|R_k = |1 + C_k|R_{k-1}$, which happens if and only if $a/(1 + V_k) = V_{k-1}$ for an $a \in E_k$, in which case $a = \tilde{a}_k \neq 0$. (See Lemma 4.3.)
- 2. If E_k contains more than one point, then E_k is a closed convex domain bounded by a cartesian oval with foci at 0 and \tilde{a}_k [3, 12, remark 5, p. 142], and $E_k^{\circ} \neq \emptyset$. If $C_{k-1} = 0$, this oval reduces to a circle centered at the origin.
- 3. Divergence only occurs if and only if $E_k = \{\tilde{a}_k\}$ for k = 1, 2 and $\sigma := \tilde{s}_1 \circ \tilde{s}_2$ is elliptic. This means that $K(a_n/1)$ converges in the classical sense if and only if it converges in the general sense in the disk-disk case.

The disk – half plane case.

Let $V_0 := B(C_0, R_0)$ and $V_1 := \{z \in \mathbb{C}; \operatorname{Re}(z e^{-i\alpha}) \geq h \cos \alpha\} \cup \{\infty\} = H(h \cos \alpha, \alpha)$ for some $C_0 \in \mathbb{C}, R_0 > 0, h, \alpha \in \mathbb{R}$. It is clear that $a/(1 + V_1) \subseteq V_0$ for $a \neq 0$ only if $-1 \notin V_1$ and $0 \in V_0$, and that $a/(1 + V_0) \subseteq V_1$ for $a \neq 0$ only if $-1 \notin V_0^\circ$. Hence we require that

(2.5)
$$|C_0| \le R_0 \le |1 + C_0|, \quad |\alpha| < \pi/2 \text{ and } h > -1.$$

But this leaves the possibility of $0 \in \partial V_1$ and $-1 \in \partial V_0$, a situation that requires caution. We therefore need extra conditions if $0 \in \partial^{\dagger} V_1 := \partial V_1 \cap (-1 - \partial V_0)$. Still, we get the following generalization of [6, thm. 5.2]:

Theorem 2.3. Let $V_0 := B(C_0, R_0)$ and $V_1 := H(h \cos \alpha, \alpha)$ where $C_0 \in \mathbb{C}$, $R_0 > 0$ and α , $h \in \mathbb{R}$ satisfy (2.5), and let

(2.6)
$$a_1^* := 2C_0 e^{i\alpha} (1+h) \cos \alpha, \qquad a_2^* := 2(1+C_0)h e^{i\alpha} \cos \alpha$$

and

$$E_{1} := \{a \in \mathbb{C}; \ |a - a_{1}^{*}| + |a| \leq 2R_{0}(1 + h)\cos\alpha\},\$$

$$(2.7)$$

$$E_{2} := \begin{cases} \{a \in \mathbb{C}; \ |a|R_{0} - \operatorname{Re}(a(1 + \overline{C_{0}})e^{-i\alpha}) \leq -h(|1 + C_{0}|^{2} - R_{0}^{2})\cos\alpha\} \\ if \ |1 + C_{0}| > R_{0},\$$

$$(1 + C_{0})e^{i\alpha}[\max\{0, 2h\cos\alpha\}, \infty) \setminus \{0\} \qquad if \ |1 + C_{0}| = R_{0}.\end{cases}$$

Furthermore, let

(2.8)

$$\tilde{E}_{1,\delta} := \begin{cases} E_1 \setminus B(a_1^*, \delta) & \text{if } R_0 = |C_0|, \\ E_1 & \text{otherwise}, \end{cases}$$

$$\tilde{E}_{2,\delta} := \begin{cases} E_2 \setminus B(a_2^*, \delta) & \text{if } R_0 = |1 + C_0| & \text{and } h \ge 0, \\ E_2 & \text{otherwise} \end{cases}$$

where $0 < \delta < |a_1^*|$ if $C_0 \neq 0$. Then the following statements are true:

- A. Every continued fraction $K(a_n/1)$ from $\langle E_1, \tilde{E}_{2,\delta} \rangle$ converges generally.
- B. If $0 \notin \partial^{\dagger} V_1$, then every continued fraction $K(a_n/1)$ from $\langle \tilde{E}_{1,\delta}, E_2 \rangle$ converges generally.
- C. Let $\varepsilon > 0$. If $K(a_n/1)$ is a continued fraction from $\langle E_{1,\delta}, E_2 \rangle$ such that for each n from some n_0 on, either dist $(-1-a_{2n}, \partial^* V_0) \ge \varepsilon$ or dist $(a_{2n-1}, \partial^* V_0)$ $\ge \varepsilon$, then $K(a_n/1)$ converges generally.
- D. Let $K(a_n/1)$ from $\langle E_1, E_2 \rangle$ converge generally to c. Then $c_{2n} \to c$. If moreover $0 \in V_1^\circ$ or $-1 \notin \partial V_0$ or $\liminf d(a_{2n-1}, \overline{V_0^c} \cap (-1-V_1)) > 0$, then $c_n \to c$.

Remarks 2.4.

- 1. $\langle E_1, E_2 \rangle$ are the element sets corresponding to $\langle V_0, V_1 \rangle$. If $R_0 = |C_0|$, then E_1 is the closed line segment $[0, a_1^*]$. Otherwise, ∂E_1 is an ellipse with foci at a_1^* and the origin. ∂E_1 reduces to a circle if $C_0 = 0$.
- 2. If $|1 + C_0| = R_0$, then E_2 is a ray. Otherwise, $E_2^{\circ} \neq \emptyset$ and ∂E_2 is a hyperbola.
- 3. If $-1 \notin \partial V_0$ or $0 \in V_1^{\circ}$, then $\tilde{E}_{2,\delta} = E_2$, so every continued fraction $K(a_n/1)$ from $\langle E_1, E_2 \rangle$ converges generally by part A in this case. Let $-1 \in \partial V_0$ and $0 \notin V_1^{\circ}$. If $0 \notin \partial V_1$ and $0 \in V_0^{\circ}$, then $\tilde{E}_{1,\delta} = E_1$, and every continued fraction from $\langle E_1, E_2 \rangle$ still converges generally by part B.

The disk – complement of disk case.

Let $V_0 = B(C_0, R_0)$ and $V_1 = \overline{B(C_1, R_1)^c}$. This time $\infty \notin V_0$ and $\infty \in V_1^\circ$, so we evidently need that $0 \in V_0^\circ$ and $-1 \notin V_1$ to get true element sets; that is,

(2.9)
$$|C_0| < R_0$$
 and $|1 + C_1| < R_1$.

Theorem 2.5. Let $V_0 := B(C_0, R_0)$ and $V_1 := \overline{B(C_1, R_1)^c}$ where $C_k \in \mathbb{C}$ and $R_k > 0$ satisfy (2.9), and let

$$\begin{split} E_1 &:= \begin{cases} \{a; \, |a - \tilde{a}_1| + |a| \frac{R_1}{|1 + C_1|} \leq \frac{R_0}{|1 + C_1|} (R_1^2 - |1 + C_1|^2) \} & \text{if } C_1 \neq -1, \\ B(0, \, (R_0 - |C_0|)R_1) & \text{if } C_1 = -1, \end{cases} \\ (2.10) \\ E_2 &:= \begin{cases} \{a; \, |a - \tilde{a}_2| - |a| \frac{R_0}{|1 + C_0|} \geq \frac{R_1}{|1 + C_0|} (|1 + C_0|^2 - R_0^2) \} \setminus \{0\} & \text{if } R_0 < |1 + C_0|, \\ \{a; \, |a| \frac{R_0}{|1 + C_0|} - |a - \tilde{a}_2| \geq \frac{R_1}{|1 + C_0|} (R_0^2 - |1 + C_0|^2) \} & \text{if } R_0 > |1 + C_0| > 0, \\ \{a = r e^{i\theta}; \ \frac{r}{2} \geq \operatorname{Re}(C_1(1 + C_0)e^{-i\theta}) + R_0R_1\} \setminus \{0\} & \text{if } R_0 = |1 + C_0|, \\ \{a; \, |a| \geq R_0(R_1 + |C_1|) \} & \text{if } C_0 = -1 \end{cases} \end{split}$$

where \tilde{a}_k is given by (2.3). Further let $\hat{E}_{1,\delta}$ be given by (2.11), and let $\hat{E}_{2,\delta} := E_2$ if $-1 \notin V_0^{\circ}$ and $\hat{E}_{2,\delta}$ be given by (2.11) otherwise, where

(2.11)
$$\widehat{E}_{k,\delta} := \begin{cases} E_k \setminus B(\tilde{a}_k, \delta)^\circ & \text{if } |C_{k-1}|R_k = R_{k-1}|1 + C_k| > 0, \\ E_k \setminus \{a \in \mathbb{C}; \ ||a| - R_0 R_1| < \delta\} & \text{if } C_{k-1} = 1 + C_k = 0, \\ E_k & \text{otherwise} \end{cases}$$

for given $\delta > 0$ so small that $\widehat{E}_{1,\delta} \neq \emptyset$. Then the following statements are true.

- A. $\langle E_1, E_2 \rangle$ are the element sets corresponding to $\langle V_0, V_1 \rangle$, and $E_k^{\circ} \neq \emptyset$ for k = 1, 2.
- B. Let $0 \notin \partial^{\dagger} V_1$. Then every continued fraction $K(a_n/1)$ from $\langle \widehat{E}_{1\delta}, E_2 \rangle$ or from $\langle E_1, \widehat{E}_{2,\delta} \rangle$ converges generally.
- C. Let $\varepsilon > 0$. If $K(a_n/1)$ is a continued fraction from $\langle \hat{E}_{1,\delta}, E_2, \rangle$ such that for each *n* from some $n_0 \in \mathbb{N}$ on, either dist $(a_{2n-1}, \partial^{\dagger}V_0) \geq \varepsilon$ or dist $(-1 - a_{2n}, \partial^{\dagger}V_0) \geq \varepsilon$, then $K(a_n/1)$ converges generally. If $K(a_n/1)$ is a continued fraction from $\langle E_1, \hat{E}_{2,\delta}, \rangle$ such that for each *n* from some $n_0 \in \mathbb{N}$ on, either dist $(-1 - a_{2n+1}, \partial^{\dagger}V_1) \geq \varepsilon$ or dist $(a_{2n}, \partial^{\dagger}V_1) \geq \varepsilon$, then $K(a_n/1)$ converges generally.
- D. Let $K(a_n/1)$ from $\langle E_1, E_2 \rangle$ converge generally to c. Then $c_{2n} \to c$. Let $\varepsilon > 0$ and $n_0 \in \mathbb{N}$. If $-1 \notin V_0 \setminus (-1 V_1^{\circ})$ or for each $n \ge n_0$ either dist $(a_{2n-1}, \overline{V_0^c} \cap (-1 V_1)) \ge \varepsilon$ or $d(-1 a_{2n+2}, \overline{V_0^c}) \ge \varepsilon$, then $K(a_n/1)$ converges to c in the classical sense.

Remarks 2.6.

- 1. E_1 is bounded by a cartesian oval with foci at 0 and \tilde{a}_1 . If $C_1 = -1$, this oval reduces to a circle. E_2 is an unbounded set.
- 2. Jones and Thron [6, thm. 5.4], [7, thm. 4.11, p.72], proved the expressions for E_1 and E_2 for the case $|C_0| < R_0 \neq |1 + C_0|$ and $|1 + C_1| < R_1 \leq |C_1|$. Theorem 2.5 generalizes their result.
- 3. This disk complement of disk case is quite special in the following sense: the case $a/(1 + V_k) = V_{k-1}$ does not necessarily occur only for $a \in \partial E_k$. Therefore $\hat{E}_{k,\delta}$ is not necessarily simply connected or even connected. This means that we do not necessarily have that

 $\overline{G_k} \subseteq E_k^{\circ}$ for $k = 1, 2 \implies \langle G_1, G_2 \rangle$ are twin convergence sets

as otherwise this is a normal feature for element sets $\langle E, E \rangle$ corresponding to simple value sets $\langle V, V \rangle$.

The half plane – half plane case.

Let V_0 and V_1 be closed half planes,

(2.12) $V_k = \{ z \in \mathbb{C}; \operatorname{Re}(z e^{-i\alpha_k}) \ge -g_k \cos \alpha_k \} \cup \{ \infty \} = H(-g_k \cos \alpha_k, \alpha_k)$

for some $\alpha_k, g_k \in \mathbb{R}$. Then $E_k \neq \emptyset$ only if $0 \in V_{k-1}$, and $-1 \notin V_k^{\circ}$. Therefore we require

(2.13)
$$|\alpha_k| \le \pi/2 \text{ and } 0 \le g_k \le 1 \text{ for } k = 1, 2.$$

Theorem 2.7. Let $\alpha_k, g_k \in \mathbb{R}$ satisfy (2.13) and

(2.14)
$$|\alpha_0 + \alpha_1| < \pi$$
 and $g_{k-1}(1 - g_k) \neq 1$ for $k = 1, 2,$

and let $K(a_n/1)$ be a continued fraction from $\langle E_1, E_2 \rangle$ given by

(2.15)
$$E_k := \{a \in \mathbb{C}; |a| - \operatorname{Re}(a e^{-i(\alpha_0 + \alpha_1)}) \le 2g_{k-1}(1 - g_k) \cos \alpha_0 \cos \alpha_1 \}.$$

Then the even and odd parts of $K(a_n/1)$ converge to finite values in V_0 , and $K(a_n/1)$ itself converges if and only if (1.5) holds.

$Remarks \ 2.8.$

- 1. $\langle E_1, E_2 \rangle$ are the element sets corresponding to $\langle V_0, V_1 \rangle$ in (2.12). If $g_{k-1} = 0$ or if $-1 \in \partial V_k$, then E_k reduces to the ray $e^{i(\alpha_0 + \alpha_1)}(0, \infty)$, possibly including the end point a = 0. (Remember, $0 \notin E_k$ if $-1 \in V_k$ by definition.)
- 2. If $E_k^{\circ} \neq \emptyset$, then ∂E_k is a parabola with axis along the ray

$$e^{i(\alpha_0+\alpha_1)}[-g_{k-1}(1-g_k)\cos\alpha_0\cos\alpha_1,\infty)$$

and focus at the origin.

3. Theorem 2.7 does not contain any essential news compared to the twin version of Jones' and Thron's multiple parabola theorem in [5], [7, thm. 4.43, p. 106] which says that Theorem 2.7 holds under the additional conditions that $0 < g_k < 1$ and $|\alpha_k| < \pi/2$ for k = 0 and k = 1.

Example 2.9. Let $\alpha_0 = \alpha_1 = 0$, $g_0 = 0$ and $g_1 = 1$ in (2.12) and (2.15). Then $0 \in \partial V_0$ and $-1 \in \partial V_1$; i.e., $-1 \in \partial^{\dagger} V_1$. For given positive sequences $\{\varepsilon_n\}$ and $\{\delta_n\}$ converging to 0, let

$$t_{2n-1} := \varepsilon_n - 1, \quad t_{2n} := \delta_n \quad \text{and} \quad a_n := t_{n-1}(1 + t_n)$$

for all n. Then $K(a_n/1)$ is a continued fraction from $\langle E_1, E_2 \rangle$ given by (2.15). By [12, formula (3.3.3), p.216] it follows that

$$S_n(0) - t_0 = -\frac{t_0}{R_n}$$
 where $R_n := \sum_{k=0}^n P_k$ and $P_k := \prod_{j=1}^k \frac{1+t_j}{-t_j}$.

In our situation,

$$\frac{1+t_{2n-1}}{-t_{2n-1}} \cdot \frac{1+t_{2n}}{-t_{2n}} = -\frac{\varepsilon_n}{1-\varepsilon_n} \cdot \frac{1+\delta_n}{\delta_n} \sim -\frac{\varepsilon_n}{\delta_n} (1+\varepsilon_n+\delta_n),$$

so $S_{2n}(0)$ may converge or diverge, depending on the asymptotic behavior of $\{\varepsilon_n(1 + \varepsilon_n + \delta_n)/\delta_n\}$. A similar argument also shows that $K(a_n/1)$ may also diverge generally in this case.

3. Some intermediate results

Let $\langle V_0, V_1 \rangle$ be closed twin value sets for the continued fraction $K(a_n/1)$. Then it follows from (1.2) and (1.4) that

$$(3.1) \quad \Delta_n := S_n(V_n) = S_{n-1} \circ s_n(V_n) \subseteq S_{n-1}(V_{n-1}) = \Delta_{n-1} \subseteq \cdots \subseteq \Delta_0 = V_0,$$

where $V_{2n} := V_0$ and $V_{2n+1} := V_1$ for all n. Since all s_n are (non-singular) linear fractional transformations, so are also S_n (see (1.4)). Therefore, since V_n is circular, also Δ_n is a circular domain. The nestedness (3.1) implies that Δ_n converges to a limit set Δ . If Δ just contains one point, the limit point case, then $\{S_{2n}\}$ and $\{S_{2n+1}\}$ converge uniformly in V_0 and V_1 respectively to the limit point c. Since both V_0 and V_1 contain more than one point in our cases, $K(a_n/1)$ converges generally to c in this case. If the limit set Δ has positive or infinite radius, the limit circle case, we need to investigate further. That Δ is a circular set in this case was proved by Thron [7, thm. 4.2B, p. 66].

In special cases classical convergence to c may be wanted. This may be possible to prove by means of Theorem 1.4. This theorem is partly based on Theorem 3.1 below, which concerns restrained sequences introduced in [4]: we say that a sequence $\{F_n\}$ of linear fractional transformations is *restrained* if there exist two sequences $\{u_n\}$ and $\{v_n\}$ from $\widehat{\mathbb{C}}$ such that

(3.2)
$$\lim d(F_n(u_n), F_n(v_n)) = 0$$
 and $\liminf d(u_n, v_n) > 0.$

If in addition $\lim F_n(u_n) = c$, then we say that $\{F_n\}$ converges generally to c. As in (1.9) there exists an exceptional sequence $\{z_n^{\dagger}\}$ for $\{F_n\}$ such that if (3.2) holds, then (see [4])

(3.3)
$$\lim d(F_n(z_n), F_n(u_n)) = 0 \quad \text{whenever } \liminf d(z_n, z_n^{\dagger}) > 0.$$

Theorem 3.1. Let $\langle V_0, V_1 \rangle$ be closed twin value sets for the continued fraction $K(a_n/1)$ where V_0 or V_1 contains more than one element. Let $k \in \{0, 1\}$ be fixed, and let $\{S_{2n+k}\}$ be restrained with exceptional sequence $\{z_n^{\dagger}\}$. Then the limit points for $\{z_n^{\dagger}\}$ are contained in $(-1 - V_{k+1}) \setminus V_k^{\circ}$, and whenever $\liminf d(u_n, z_n^{\dagger}) > 0$, the set L of the limit points for $S_{2n+k}(u_n)$ is independent of $\{u_n\}$ and $L \subseteq V_0 \setminus (-1 - V_1^{\circ})$.

Proof. Since either V_0 or V_1 contains at least two points, they both do since $a_{2n}/(1+V_0) \subseteq V_1$ and $a_{2n+1}/(1+V_1) \subseteq V_0$. Since V_k contains more than one point, there exists a sequence $\{v_n\}$ from V_k with $\liminf d(v_n, z_n^{\dagger}) > 0$. By (3.1) it follows that $S_{2n+k}(V_k) \subseteq V_0$ for all n. It follows from (3.3) that L is independent of $\{u_n\}$ when $\liminf d(u_n, z_n^{\dagger}) > 0$, and thus $L \subseteq V_0$. Similarly, by Remark 1.2.2, $L \subseteq W_0 = -1 - \overline{V_1^c}$, so $L \subseteq V_0 \cap W_0 = Y_0 = V_0 \setminus (-1 - V_1^\circ)$. Evidently, $\{z_n^{\dagger}\}$ can be chosen as $z_n^{\dagger} := S_{2n+k}^{-1}(p)$ for any $p \notin L$. By (3.3)

Evidently, $\{z_n^{\dagger}\}$ can be chosen as $z_n^{\dagger} := S_{2n+k}^{-1}(p)$ for any $p \notin L$. By (3.3) every exceptional sequence has the same asymptotic behavior. Let $p \notin V_0$. Then $z_n^{\dagger} := S_{2n+k}^{-1}(p) \in V_k^c$ for all n. Similarly, for $q \in W_k^c$ given by $W_k := (-1 - \overline{V_{k+1}^c})$ we can choose $z_n^{\dagger} := S_{2n+k}^{-1}(q)$ for all n, and then $z_n^{\dagger} \in W_k^c$ for all n. (See Remark 1.2.2.) Hence all the limit points of $\{z_n^{\dagger}\}$ are $\subseteq \overline{W_k^c} \cap \overline{V_k^c} = (-1 - V_{k+1}) \setminus V_k^c$. \Box

Since V_0 is a circular domain, there exists a linear fractional transformation φ_0 such that $\varphi_0(V_0) = \overline{\mathbb{D}}$. Hence the following result from [10] is useful to establish convergence in the limit circle case.

Theorem 3.2 ([10, thm. 3.8, 3.10]). Let $\{t_n\}$ be linear fractional transformations with $t_n(\mathbb{D}) \subseteq \mathbb{D}$, and let $T_n := t_1 \circ t_2 \circ \cdots \circ t_n$ for all $n \in \mathbb{N}$. If $R := \lim \operatorname{rad}(T_n(\overline{\mathbb{D}})) > 0$, and there exists a set $I \subseteq \mathbb{N}$ such that

 $(3.4) \qquad \limsup_{n \in I, n \to \infty} \operatorname{rad}(t_n(\partial \mathbb{D})) < 1 \quad and \quad \liminf_{n \in \mathbb{N} \setminus I, n \to \infty} \operatorname{rad}(t_{n-1}^{-1}(\partial \mathbb{D})) > 1,$

then $|T_n^{-1}(\infty)| \to 1$ and $\sum_{n=1}^{\infty} |T'_n(0)| < \infty$.

Remarks 3.3.

- 1. Of course, if I is bounded, then the first condition in (3.4) is void, and if $\mathbb{N} \setminus I$ is bounded, then the second one is void.
- 2. The conclusion $\sum |T'_n(0)| < \infty$ for the derivatives T'_n implies that $\{T_n\}$ is restrained. (Proof: T_n can be written

$$T_n(z) = C_n + R_n e^{i\omega_n} \frac{z - Q_n}{1 - \overline{Q}_n z} \quad \text{for some } |Q_n| < 1 \text{ and } \omega_n \in \mathbb{R}$$

when
$$T_n(\overline{\mathbb{D}}) = B(C_n, R_n)$$
, and thus $T'_n(z) = R_n e^{i\omega_n} (1 - |Q_n|^2) / (1 - \overline{Q}_n z)^2$.
Hence $T'_n(z) \to 0$ for all $z \in \mathbb{D}$.) Indeed, $\sum |T'_n(z)| < \infty$ for every $z \in \mathbb{D}$.

Let \mathcal{M} be the family of (non-singular) linear fractional transformations. For given $V \subseteq \widehat{\mathbb{C}}$ and $\varepsilon > 0$ we introduced the subfamily

(3.5)
$$\mathcal{M}_{\varepsilon}(V) := \{ t \in \mathcal{M}; \ t(V) \subseteq V \setminus B_d(z, \varepsilon) \text{ for some } z \in \partial V \}$$

in [11]. This notation is useful to convert Theorem 3.2 to our situation:

Corollary 3.4. Let $k \in \{0,1\}$ be fixed, and let $\langle V_0, V_1 \rangle$ be closed circular twin value sets for the continued fraction $K(a_n/1)$ where the limit circle case occurs. Furthermore, let $\sigma_n := s_{2n-1+k} \circ s_{2n+k}, \sigma_0 := \sigma_1$ and assume that

(3.6) $\sigma_n \in \mathcal{M}_{\varepsilon}(V_k) \text{ for all } n \in I \text{ and } \sigma_{n-1}^{-1} \in \mathcal{M}_{\varepsilon}(V_k^c) \text{ for all } n \in \mathbb{N} \setminus I$

for some $I \subseteq \mathbb{N}$ and $\varepsilon > 0$. Then $\{S_{2n+k}\}$ is restrained and its exceptional sequences $\{z_n^{\dagger}\}$ have all their limit points $\in \partial V_k$. If also V_0 is bounded, then $\{\zeta_{2n+k}\}$ is an exceptional sequence for $\{S_{2n+k}\}$ and $\sum_{n=1}^{\infty} |S'_{2n+k}(z)| < \infty$ for every finite $z \in V_k^{\circ}$.

Proof. Let $\varphi \in \mathcal{M}$ satisfy $\varphi(V_k) = \overline{\mathbb{D}}$. Then $t_n := \varphi \circ \sigma_n \circ \varphi^{-1}$ maps \mathbb{D} into \mathbb{D} , and $T_n := t_1 \circ t_2 \circ \cdots \circ t_n = \varphi \circ S_{2n}^{(k)} \circ \varphi^{-1}$ where $S_{2n}^{(k)} := \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_n$. Condition (3.6) implies (3.4). Hence $\{T_n\}$ is restrained with exceptional sequence $\{T_n^{-1}(\infty)\}$ where $|T_n^{-1}(\infty)| \to 1$. Therefore $\{S_{2n}^{(k)}\}$ is restrained with exceptional sequence $z_n^{\dagger} := \varphi^{-1} \circ T_n^{-1}(\infty) = (S_{2n}^{(k)})^{-1}(\varphi^{-1}(\infty))$. That $\{S_{2n+k}\}$ is restrained with exceptional sequence $\{z_n^{\dagger}\}$ follows therefore since $S_{2n} = S_{2n}^{(0)}$ and $S_{2n+1} = s_1 \circ S_{2n}^{(1)}$ for the fixed $s_1 \in \mathcal{M}$. Since $|T_n^{-1}(\infty)| \to 1$, i.e., dist $(T_n^{-1}(\infty), \partial \mathbb{D}) \to 0$, it follows that $d(\varphi^{-1} \circ T_n^{-1}(\infty), \varphi^{-1}(\partial \mathbb{D})) \to 0$ where $\varphi^{-1}(\partial \mathbb{D}) = \partial V_k$ and $\varphi^{-1} \circ T_n^{-1}(\infty) = z_n^{\dagger}$. That is, all the limit points of $\{z_n^{\dagger}\}$ are $\in \partial V_k$.

Let V_0 be bounded. Then $\infty \notin V_0$, so $\{\zeta_{2n+k}\}$ is an exceptional sequence for $\{S_{2n+k}\}$ since $S_{2n+k}(\zeta_{2n+k}) = \infty$ whereas all the limit points for $\{S_{2n+k}(u_n)\}$ are $\in V_0$ when $\liminf d(u_n, z_n^{\dagger}) > 0$ (Theorem 3.1). It remains to prove that $\sum |S'_{2n+k}(z)| < \infty$ for finite $z \in V_k^{\circ}$. By Theorem 3.2 and Remark 3.3.2 we know that $\sum |T'_n(w)| < \infty$ for every $w \in \mathbb{D}$. First let k = 0 and choose $\varphi(z) := (z - C_0)/R_0$ where C_0 and R_0 are the center and radius of V_0 . Let $z \in V_0^{\circ}$ be arbitrarily chosen, and let $w := \varphi(z)$. Then $w \in \mathbb{D}$ and $S'_{2n}(z) = (\varphi^{-1})'(T_n(\varphi(z)))$.

CONTINUED FRACTIONS

$$T'_n(\varphi(z)) \cdot \varphi'(z) = (\varphi^{-1})'(T_n(w)) \cdot T'_n(w) \cdot \frac{1}{R_0} = R_0 \cdot T'_n(w) \cdot \frac{1}{R_0} = T'_n(w).$$
 Hence $\sum |S'_{2n}(z)| < \infty.$

Next let k = 1 and set $\widehat{V}_0 := s_1(V_1)$. Then $\widehat{V}_0 = B(\widehat{C}_0, \widehat{R}_0) \subseteq V_0$ for some fixed $\widehat{C}_0 \in \mathbb{C}$ and $\widehat{R}_0 > 0$. Furthermore, let $\varphi_1(z) := (z - \widehat{C}_0)/\widehat{R}_0$ so that $\varphi_1(\widehat{V}_0) = \overline{\mathbb{D}}$ and $t_n := \varphi_1 \circ s_1 \circ s_{2n} \circ s_{2n+1} \circ s_1^{-1} \circ \varphi_1^{-1}$ maps \mathbb{D} into \mathbb{D} . Let a finite $z \in V_1^\circ$ be arbitrarily chosen, and let $w := \varphi_1 \circ s_1(z)$. Then $w \in \mathbb{D}$ and

$$S'_{2n+1}(z) = (\varphi_1^{-1})'(T_n \circ \varphi_1 \circ s_1(z)) \cdot T'_n(\varphi_1 \circ s_1(z)) \cdot \varphi_1'(s_1(z)) \cdot s_1'(z)$$

= $\widehat{R}_0 \cdot T'_n(w) \cdot \frac{1}{\widehat{R}_0} \cdot \frac{-a_1}{(1+z)^2} = \frac{-a_1}{(1+z)^2} T'_n(w)$

where $z \neq -1$ since $-1 \notin V_1$ when V_0 is bounded. Hence $\sum |S'_{2n+1}(z)| < \infty$. \Box

It follows from (1.6) that S_n can be written

(3.7)
$$S_n(z) = \begin{cases} c_{n-1} - \frac{\zeta_n(c_n - c_{n-1})}{z - \zeta_n} & \text{if } \zeta_n \neq \infty, \\ c_n - (c_{n-2} - c_n)z & \text{if } \zeta_n = \infty \end{cases}$$

Therefore

(3.8)
$$S'_{n}(z) = \begin{cases} \frac{\zeta_{n}(c_{n} - c_{n-1})}{(z - \zeta_{n})^{2}} = -\frac{S_{n}(z) - c_{n-1}}{z - \zeta_{n}} & \text{if } \zeta_{n} \neq \infty, \\ c_{n} - c_{n-2} & \text{if } \zeta_{n} = \infty. \end{cases}$$

Under the conditions of Corollary 3.4 it follows therefore that for arbitrary $\varepsilon > 0$,

(3.9)
$$\sum_{k=1}^{\infty} |S_{2n+k}(z_n) - c_{2n+k-1}| < \infty$$

whenever $\varepsilon \le \operatorname{dist}(z_n, Z_k) \le \frac{1}{\varepsilon}$ for all n and $\infty \notin Z_k$.

(For the notation \sum' and Z_k , see the list of notation in section 1.) This leads to the following result, where $W_k := -1 - \overline{V_{k+1}^c}$ and $\partial^* V_k := \partial V_k \cap (-1 - V_{k+1})$ as usual.

Theorem 3.5. Let $k \in \{0,1\}$ be fixed. Let $\langle V_0, V_1 \rangle$ be closed circular twin value sets for the continued fraction $K(a_n/1)$ where V_0 is bounded, the limit circle case occurs and (3.6) holds for our k for some $I \subseteq \mathbb{N}$ and $\varepsilon > 0$. Then $Z_k \subseteq \partial^* V_k$, $-k \notin Z_k, 0 \notin Z_0$ and Z_1 and Z_k are bounded, $\sum' |c_{2n} - c_{2n-1}| < \infty$, and the following statements are true.

A. Let $\varepsilon > 0$. If $(k-1) \notin Z_k$ or if for each n from some n_0 on, either dist $(a_{2n+k-1}, Z_k) \ge \varepsilon$ or dist $(-1-a_{2n+k}, Z_k) \ge \varepsilon$, then $\sum' |c_n - c_{n-1}| < \infty$. B. If also the limit circle case occurs for $S_{2n}(W_0)$ and

(3.10)
$$\sigma_n \in \mathcal{M}_{\varepsilon}(W_k) \text{ for } n \in I \text{ and } \sigma_{n-1}^{-1} \in \mathcal{M}_{\varepsilon}(W_k^c) \text{ for } n \in \mathbb{N} \setminus I$$

for some $I \subseteq \mathbb{N}$ and $\varepsilon > 0$ for σ_n as in Corollary 3.4, then $Z_k \subseteq \partial^{\dagger} V_k$.

Proof. Under our conditions, $\{S_{2n+k}\}$ is restrained with exceptional sequence $\{\zeta_{2n+k}\}, Z_k \subseteq (-1 - V_{k+1}) \cap \partial V_k = \partial^* V_k$ and $Z_{k+1} \subseteq (-1 - V_k) \setminus V_{k+1}^{\circ}$ (Theorem 3.1 and Corollary 3.4). Now, V_0 is bounded, so $-1 \notin V_1$, and thus $0 \notin Z_0$ and $-k \notin Z_k$, and Z_k and Z_1 are bounded. Since $S_{2n}(0) = c_{2n}$ and $S_{2n+1}(-1) = c_{2n-1}$, it follows therefore from (3.9) that $\sum' |c_{2n} - c_{2n-1}| < \infty$.

it follows therefore from (3.9) that $\sum' |c_{2n} - c_{2n-1}| < \infty$. A. It suffices to prove that either $\sum' |c_{2n-2} - c_{2n-1}| < \infty$ or $\sum' |c_{2n+m} - c_{2n+m-2}| < \infty$ for an $m \in \{0, 1\}$. First let $(k-1) \notin Z_k$. If k = 0, this means that

 $\sum_{n \in I} |S_{2n}(-1) - c_{2n-1}| < \infty \text{ by } (3.9) \text{ where } S_{2n}(-1) = c_{2n-2}. \text{ If } k = 1, \text{ then } 0 \notin Z_1 \text{ and } \sum_{n \in I} |S_{2n+1}(0) - c_{2n}| < \infty. \text{ Next let } I := \{n \in \mathbb{N}; \operatorname{dist}(a_{2n+k-1}, Z_k) \ge \varepsilon\}. \text{ Then } \sum_{n \in I} |S_{2n+k-2}(a_{2n+k-1}) - c_{2n+k-3}| < \infty \text{ where } S_{2n+k-2}(a_{2n+k-1}) = c_{2n+k-1} \text{ and } \sum_{n \notin I} |S_{2n+k}(-1 - a_{2n+k}) - c_{2n+k-1}| < \infty \text{ where } S_{2n+k}(-1 - a_{2n+k}) = c_{2n+k-3}, \text{ which means that } \sum_{n \in I} |c_{2n+k+1} - c_{2n+k-1}| < \infty.$

B. $\langle W_0, W_1 \rangle$ are twin value sets for $K(a_n/1)$ (Remark 1.2.2). They satisfy the conditions in Corollary 3.4, so the exceptional sequences for $\{S_{2n+k}\}$ have all their limit points in ∂W_k . Hence $Z_k \subseteq \partial V_k \cap \partial W_k = \partial V_k \cap (-1 - \partial V_{k+1}) = \partial^{\dagger} V_k$. \Box

4. Proofs

Inspired by (3.5) we define

(4.1)
$$\mathcal{M}_{\varepsilon}(V,W) := \{ t \in \mathcal{M}; \ t(V) \subseteq W \setminus B_d(z,\varepsilon) \text{ for some } z \in \partial W \},$$
$$\mathcal{E}(V) := \{ \langle A, B \rangle \subseteq \mathbb{C}^2;$$

(4.2)
$$\exists \varepsilon > 0 \text{ s.t. } s_1 \circ s_2 \in \mathcal{M}_{\varepsilon}(V) \text{ for all } \langle a_1, a_2 \rangle \in \langle A, B \rangle \},$$

(4.3)
$$\mathcal{E}(V,W) := \{A \subseteq \mathbb{C}; \exists \varepsilon > 0 \text{ s.t. } s \in \mathcal{M}_{\varepsilon}(V,W) \text{ for all } a \in A\}.$$

Proof of Theorem 1.4. Since $K(a_n/1)$ converges generally to c whereas $q \neq c$, the sequence $\{S_n\}$ is restrained with exceptional sequence $z_n^{\dagger} := S_n^{-1}(q)$. Part A follows from Theorem 3.1. The result in B follows from (1.9) since $S_{2n+k}(-1) = c_{2n+k-2}$ and $S_{2n+k}(\infty) = c_{2n+k-1}$. Similarly, part C follows from (1.9) since $S_{2n+k-2}(a_{2n+k-1}) = c_{2n+k-1}$ and $S_{2n+k+2}(-1-a_{2n+k+2}) = c_{2n+k-1}$.

To prove part D we observe that if V_0 is bounded, then $c \neq \infty$ and $\infty \notin \tilde{Z}_1$ by part A. Hence $\{\zeta_n\}$ is exceptional and $S_{2n+1}(\infty) = c_{2n} \to c$ by part B. Finally, if $-1 \notin V_0 \setminus (-1 - V_1^{\circ})$, i.e., $0 \notin (-1 - V_0) \setminus V_1^{\circ}$, then $0 \notin \tilde{Z}_1$, and part E follows from part B. (The same holds true if $0 \notin V_0$, but $0 \notin V_0 \Rightarrow \infty \notin V_1 \Rightarrow -1 \notin V_0$.) \Box

Lemma 4.1. For given closed twin value sets $\langle V_0, V_1 \rangle$, let $U_k := -1 - V_{k+1}^c$ for k = 0, 1, and let $k \in \{0, 1\}$ be a fixed number. Then $s(U_k) \subseteq U_{k+1}$ if and only if $s(V_k) \subseteq V_{k+1}$ and $s(U_k) = U_{k+1}$ if and only if $s(V_k) = V_{k+1}$. Similarly, if $A \subseteq \mathbb{C}$ is a closed set with $0, \infty \notin A$, then $A \in \mathcal{E}(U_k, U_{k+1})$ if and only if $A \in \mathcal{E}(V_k, V_{k+1})$.

Proof. Let $a/(1+V_k) \subseteq V_{k+1}$. Since V_k is closed, the set V_k^c is open and non-empty, and both V_k , V_{k+1} , U_k and U_{k+1} contain finite elements. Therefore

$$\frac{a}{1+U_k} = -\frac{a}{V_{k+1}^c} = -\left(\frac{a}{V_{k+1}}\right)^c \subseteq (-1-V_k)^c = U_{k+1}$$

This actually proves the first two equivalences since U and V can be interchanged in this inclusion. Let $a/(1+V_k) \subseteq V_{k+1} \setminus B_d(z,\varepsilon)$ for some finite $z \in \partial V_{k+1} = -1 - \partial U_k$ and $\varepsilon > 0$. That is, $a/U_{k+1} \supseteq -(V_{k+1} \setminus B_d(z,\varepsilon))^c = -(-1 - U_k) \cup B_d(z,\varepsilon) =$ $1 + U_k \cup B_d(z^*,\varepsilon)$ where $z^* := -1 - z \in \partial U_k$. That is, $s^{-1}(U_{k+1}) \supseteq U_k \cup B_d(z^*,\varepsilon)$, so $s(U_k \cup B_d(z^*,\varepsilon)) \subseteq U_{k+1}$. Let $D := B_d(z^*,\varepsilon) \setminus U_k$ so that $U_k \cap D = \emptyset$ and $U_k \cup D = U_k \cup B_d(z^*,\varepsilon)$. Then

$$\frac{a}{1+U_k \cup B_d(z^*,\varepsilon)} = \frac{a}{1+U_k} \cup \frac{a}{1+D} \subseteq U_{k+1}; \quad \text{i.e.,} \quad \frac{a}{1+U_k} \subseteq U_{k+1} \setminus \frac{a}{1+D}$$

where $a/(1 + z^*) \in U_{k+1}$. Therefore $a/(1 + U_k) \subseteq U_{k+1} \setminus B_d(\frac{a}{1+z^*}, \varepsilon^*)$ where $\varepsilon^* := \operatorname{dist}(\frac{a}{1+z^*}, \frac{a}{1+\partial B_d(z,\varepsilon)})$. Since $0, \infty \notin A$, the quantity ε^* has a positive lower bound for $a \in A$. Therefore $A \in \mathcal{E}(U_k, U_{k+1})$. This proves the last equivalence. \Box

Lemma 4.2. Let V_0 , V_1 be closed circular domains, and let $a_1, a_2 \in \mathbb{C} \setminus \{0\}$ satisfy $a_k/(1+V_k) \subseteq V_{k-1}$ for k = 1, 2. Then $\sigma := s_1 \circ s_2$ is an elliptic transformation if and only if $s_k(V_k) = V_{k-1}$ for k = 1, 2 and σ has exactly two distinct fixed points $w_0, w_1 \notin \partial V_0$.

Proof. Let σ be elliptic. Since $\sigma(V_0) \subseteq V_0$, it follows from [11, thm. 1.4] that $\sigma(V_0) = V_0$. Since $V_0 = s_1 \circ s_2(V_0) \subseteq s_1(V_1) \subseteq V_0$, this means that $s_1(V_1) = V_0$ and $s_2(V_0) = V_1$. It is clear that σ has two distinct fixed points w_0, w_1 and that ∂V_0 is a fixed circle (or fixed line) for σ . Hence ∂V_0 separates the two fixed points.

Conversely, assume that $s_k(V_k) = V_{k-1}$ for k = 1, 2 and that σ has two distinct fixed points $\notin \partial V_0$. Then $\sigma(\partial V_0) = \partial V_0$, which means that σ is either hyperbolic, parabolic, elliptic or the identity transformation. Since σ has exactly two distinct fixed points, the parabolic case and the identity case are ruled out. Since none of the fixed points lie on ∂V_0 , the hyperbolic case is ruled out, so σ is elliptic. \Box

Lemma 4.3 (The disk – disk case). Let $V_k := B(C_k, R_k)$ for k = 0, 1, where $C_k \in \mathbb{C}$ and $R_k > 0$ satisfy (2.1). Then $\langle E_1, E_2 \rangle$ given by (2.4) are the corresponding element sets. Let $k \in \{1, 2\}$ be fixed. Then $E_k \neq \emptyset$ if and only if (2.2) holds. If (2.2) holds with strict inequality, then $E_k^o \neq \emptyset$. If (2.2) holds with equality, then $E_k = \{\tilde{a}_k\}$ is given by (2.3) and $\tilde{a}_k \neq 0$. If $E_k^o \neq \emptyset$, then $\langle E_k, E_{k+1} \rangle \in \mathcal{E}(V_{k-1})$.

Proof. For fixed $k \in \{1, 2\}$ and $a \neq 0$ we have

(4.4)
$$\frac{a}{1+V_k} = B\left(\frac{a(1+\overline{C}_k)}{|1+C_k|^2 - R_k^2}, \frac{|a|R_k}{|1+C_k|^2 - R_k^2}\right) =: B(\widehat{C}_{k-1}, \widehat{R}_{k-1})$$

and $a/(1 + V_k) \subseteq V_{k-1}$ if and only if $|\widehat{C}_{k-1} - C_{k-1}| + \widehat{R}_{k-1} \leq R_{k-1}$, that is, if and only if $a \in E_k$, where E_k is given by (2.4). Since $R_k < |1 + C_k|$, we see from (2.4) that $E_k \neq \emptyset$ if and only if $\widetilde{a}_k \in E_k$, which proves that (2.2) is necessary and sufficient. It also proves that \widetilde{a}_k is the only point in E_k if and only if (2.2) holds with equality, and that $E_k^{\circ} \neq \emptyset$ otherwise. This means that if $E_k^{\circ} \neq \emptyset$, then $s \in \mathcal{M}_{\varepsilon_a}(V_k, V_{k-1})$ for some $\varepsilon_a > 0$ for every $a \in E_k$. Since E_k is compact in \mathbb{C} $(-1 \notin V_k$ when V_{k-1} is bounded), this means that $E_k \in \mathcal{E}(V_k, V_{k-1})$. Finally, since $s_k \circ s_{k+1}(V_{k+1}) \subseteq s_k(V_k)$ for all $\langle a_k, a_{k+1} \rangle \in \langle E_k, E_{k+1} \rangle$, it follows that $\langle E_k, E_{k+1} \rangle \in \mathcal{E}(V_{k-1})$.

Proof of Theorem 2.1. If $|C_{k-1}|R_k = |1 + C_k|R_{k-1}$ for k = 1 and k = 2, then $K(a_n/1)$ with all $a_{2n-1} = \tilde{a}_1$ and $a_{2n} = \tilde{a}_2$ is the only continued fraction from $\langle E_1, E_2 \rangle$. It converges if and only if $\tilde{s}_1 \circ \tilde{s}_2$ is non-elliptic. Let (2.2) hold with strict inequality for at least one $k \in \{1, 2\}$. Without loss of generality we assume that $E_1^{\circ} \neq \emptyset$. (See Remark 1.2.1.)

Assume first that the limit point case occurs. Then $K(a_n/1)$ converges generally to a value $c \in V_0$. It follows by Lemma 1.4D that $c_{2n} \to c$. Since also V_1 is bounded, we have $-1 \notin V_0$, so also $c_{2n+1} \to c$ by Lemma 1.4E.

Assume next that the limit circle case occurs. By Lemma 4.3 we know that $\limsup \operatorname{rad}(s_{2n-1} \circ s_{2n}(V_0)) < \operatorname{rad}(V_0)$, and so $Z_0 \subseteq \partial^* V_0$ by Theorem 3.5. Now, $-1 \notin V_0$ implies that $-1 \notin \partial^* V_0$. Hence $\sum' |c_n - c_{n-1}| < \infty$ by Theorem 3.5A, and thus $K(a_n/1)$ converges.

Lemma 4.4 (The disk – half plane case). Let $V_0 := B(C_0, R_0)$ and $V_1 := H(h \cos \alpha, \alpha)$ where $C_0 \in \mathbb{C}$ and R_0 , $h, \alpha \in \mathbb{R}$ satisfy (2.5). Then $\langle E_1, E_2 \rangle$ given by

(2.7) are the corresponding element sets, and $E_{k,\delta}$ given by (2.8) satisfies $E_{k,\delta} \in \mathcal{E}(V_k, V_{k-1})$ for k = 1, 2 and $0 < \delta < |a_1^*|$.

Proof. For $a \neq 0$ we have

(4.5)
$$\frac{a}{1+V_1} = B\left(\frac{a e^{-i\alpha}}{2(1+h)\cos\alpha}, \frac{|a|}{2(1+h)\cos\alpha}\right)$$

which is $\subseteq V_0$ if and only if $\left|\frac{ae^{-i\alpha}}{2(1+h)\cos\alpha} - C_0\right| + \frac{|a|}{2(1+h)\cos\alpha} \leq R_0$, i.e., if and only if $a \in E_1$. Since $0 \in V_0$ and $0/(1+V_1) = \{0\}$, we also have $0 \in E_1$. Similarly, for $a \neq 0$, (4.6)

$$\frac{a}{1+V_0} = \begin{cases} B\left(\frac{a(1+\overline{C_0})}{|1+C_0|^2 - R_0^2}, \frac{|a|R_0}{|1+C_0|^2 - R_0^2}\right) =: B(\widehat{C}_1, \widehat{R}_1) & \text{if } |1+C_0| > R_0, \\ H\left(|a|/(2R_0), \arg(a(1+\overline{C_0}))\right) & \text{if } |1+C_0| = R_0, \end{cases}$$

and thus $a/(1+V_0) \subseteq V_1$ if and only if

(4.7)
$$\operatorname{Re}\left(\frac{a(1+\overline{C_0})}{|1+C_0|^2-R_0^2}e^{-i\alpha}\right) - \frac{|a|R_0}{|1+C_0|^2-R_0^2} \ge h\cos\alpha \quad \text{if } |1+C_0| > R_0, \\ \arg\left(a(1+\overline{C_0})\right) = \alpha \quad \text{and} \quad \frac{|a|}{2R_0} \ge h\cos\alpha \quad \text{if } |1+C_0| = R_0,$$

i.e., if and only if $a \in E_2$. If $-1 \in V_0$, i.e., $|1 + C_0| = R_0$, then $0 \notin E_2$ by definition. Hence $\langle E_1, E_2 \rangle$ are the element sets corresponding to $\langle V_0, V_1 \rangle$.

By (4.5) it follows that $a/(1 + V_1) = V_0$ if and only if $R_0 = |C_0|$ and $C_0 = a e^{-i\alpha}/[2(1+h)\cos\alpha]$, i.e., $a = a_1^*$. Since $-1 \notin V_1$, the set E_1 is compact, so this shows that $E_1 \in \mathcal{E}(V_1, V_0)$ if $R_0 > |C_0|$. Let $R_0 = |C_0|$. Since $\tilde{E}_{1,\delta} \subseteq E_1$ is a compact set not containing a_1^* , $\tilde{E}_{1,\delta} \in \mathcal{E}(V_1, V_0)$.

Next we study $\tilde{E}_{2,\delta}$. First let $|1+C_0| = R_0$. By (4.6) it follows that $a/(1+V_0) = V_1$ for $a \neq 0$ if and only if h > 0 and $q := \frac{a}{2R_0} \frac{1+\overline{C_0}}{|1+C_0|} = h e^{i\alpha} \cos \alpha$, i.e., $a = a_2^*$. In this case $a_2^* \neq 0$ and E_2 is the ray $E_2 = a_2^*[1,\infty)$ and $\tilde{E}_{2,\delta} = a_2^*[1+\delta/|a_2^*|,\infty)$. Hence $\tilde{E}_{2,\delta}$ is a closed set in \mathbb{C} with $0 \notin \tilde{E}_{2,\delta}$, and even if $a_{2n_m} \to \infty$ as $m \to \infty$, the set $a_{2n_m}/(1+V_0)$ will not approach V_1 . (Indeed, it approaches the point set $\{\infty\}$ since V_0 is bounded.) Therefore $\tilde{E}_{2,\delta} \in \mathcal{E}(V_0, V_1)$ if h > 0. If h < 0, then dist $(q - h e^{i\alpha} \cos \alpha) > |h| \cos \alpha > 0$, and $E_2 \in \mathcal{E}(V_0, V_1)$. If h = 0, then $\tilde{E}_{2,\delta} = [\delta, \infty)e^{i\gamma}$ with $\gamma := \alpha + \arg(1+C_0)$, and $a/(1+V_0)$ is the half plane $H(|a|/2R_0, \arg(a(1+\overline{C_0}))) = H(|a|/2R_0, \alpha)$ for $a \in E_2$. Hence also now $\tilde{E}_{2,\delta} \in \mathcal{E}(V_0, V_1)$.

Next let $|1 + C_0| > R_0$. Then it follows from (4.6) that $a/(1 + V_0) = B(\hat{C}_1, \hat{R}_1)$ is a disk not containing the origin for $a \neq 0$. If a = 0, then $a/(1 + V_0) = \{0\}$ since $-1 \notin V_0$. Hence, there is no possibility of $B(\hat{C}_1, \hat{R}_1) \to V_1$ unless $\hat{R}_1 \to \infty$; i.e., $|a| \to \infty$, but then $a/(1 + V_0) \to \{\infty\}$ since V_0 is bounded. Hence $E_2 \in \mathcal{E}(V_0, V_1)$ in this case.

Proof of Theorem 2.3. Let $K(a_n/1)$ be a continued fraction from $\langle E_1, E_2 \rangle$. If $\operatorname{rad}(S_{2n}(V_0)) \to 0$ or $\operatorname{rad}(S_{2n}(W_0)) \to 0$ or $\operatorname{diam}(S_{2n}(Y_0)) \to 0$, then $K(a_n/1)$ clearly converges generally. Assume in the proof of parts A–C below that $\operatorname{diam}(S_{2n}(Y_0)) \to \tilde{d} > 0$, and thus $\operatorname{rad}(S_{2n}(V_0)) \to R > 0$ and $\operatorname{rad}(S_{2n}(W_0)) \to R^* > 0$.

A. Let $K(a_n/1)$ be from $\langle E_1, E_{2,\delta} \rangle$. Then $s_{2n} \circ s_{2n+1}(V_1) \subseteq s_{2n}(V_0)$ where $a_{2n} \in \tilde{E}_{2,\delta} \in \mathcal{E}(V_0, V_1)$ by Lemma 4.4, so $\langle \tilde{E}_{2,\delta}, E_1 \rangle \in \mathcal{E}(V_1)$. Therefore $K(a_n/1)$ converges in the classical sense if $0 \notin Z_1$ (Theorem 3.5A with k = 1).

Let $0 \in Z_1$. Since by Theorem 3.5, $Z_1 \subseteq \partial^* V_1$, this means that $0 \in \partial V_1$, and $-1 \in V_0$, which means that $-1 \in \partial V_0$ by (2.5), so indeed, $0 \in \partial^{\dagger} V_1$. Then h = 0, and thus $a_2^* = 0$, and $R_0 = |1+C_0|$ and $\tilde{E}_{2,\delta} = e^{i\gamma}[\delta, \infty)$ where $\gamma := \alpha + \arg(1+C_0)$. This means that dist $(\tilde{E}_{2,\delta}, \partial^* V_1) > 0$ unless $\tilde{E}_{2,\delta} \subseteq \partial V_1$. Now, $\operatorname{Re}(C_0) \ge -\frac{1}{2}$ when $-1 \in \partial V_0$ since $0 \in V_0$ by (2.5) and V_0 is a disk. Therefore $\gamma \neq \alpha \pm \frac{\pi}{2}$, and $\tilde{E}_{2,\delta} \not\subseteq \partial V_1$. Hence $K(a_n/1)$ still converges by Theorem 3.5A.

B. Let $K(a_n/1)$ be from $\langle \tilde{E}_{1,\delta}, E_2 \rangle$ and let $0 \notin \partial^{\dagger} V_1$. If $\tilde{E}_{2,\delta} = E_2$, then the situation is covered by part B, so let $R_0 = |1 + C_0|$ and $h \ge 0$. That is, $-1 \in \partial V_0$ and $0 \notin V_1^{\circ}$, and so, $0 \notin V_1$ under our conditions. Now, $a_{2n-1} \in \tilde{E}_{1,\delta} \in \mathcal{E}(V_1, V_0)$ by Lemma 4.4, so $\langle \tilde{E}_{1,\delta}, E_2 \rangle \in \mathcal{E}(V_0)$. The result follows therefore from Theorem 3.5A since $0 \notin V_1$ implies that $-1 \notin \partial^* V_0$, and thus $-1 \notin Z_0$.

C. Let $K(a_n/1)$ be from $\langle \dot{E}_{1,\delta}, E_2 \rangle$. By Lemma 4.4, $\langle \dot{E}_{1,\delta}, E_2 \rangle \in \mathcal{E}(V_0)$. Hence $Z_0 \subseteq \partial^* V_0$ by Theorem 3.5. The convergence follows therefore from Theorem 3.5A.

D. That $c_{2n} \to c$ follows from Theorem 1.4D. We know that $Z_k \subseteq (-1-V_{k+1}) \setminus V_k^\circ$ by Theorem 1.4A. Therefore $0 \notin Z_1$ if $0 \in V_1^\circ$ or $-1 \notin V_0$, which in our situation holds if $-1 \notin \partial V_0$, and $c_n \to c$ by Theorem 1.4E.

The conditions on $\{a_n\}$ imply that $dist(a_{2n-1}, Z_0) \ge \varepsilon$ from some n on (Theorem 3.5), and thus $c_{2n-1} \to c$ by Theorem 1.4C.

Lemma 4.5 (The disk – complement of disk case). Let $V_0 := B(C_0, R_0)$ and $V_1 := \overline{B(C_1, R_1)^c}$ where $C_0, C_1 \in \mathbb{C}$ and $R_0, R_1 > 0$ satisfy (2.9). Let E_k and $\widehat{E}_{k,\delta}$ be given as in Theorem 2.5. Then $\langle E_1, E_2 \rangle$ are the element sets corresponding to $\langle V_0, V_1 \rangle$, and $\langle \widehat{E}_{1,\delta}, E_2 \rangle \in \mathcal{E}(V_0)$ and $\langle \widehat{E}_{2,\delta}, E_1 \rangle \in \mathcal{E}(V_1)$.

Proof. For $a \neq 0$ the set $a/(1+V_1)$ is a circular disk $B(\widehat{C}_0, \widehat{R}_0)$ where

(4.8)
$$\widehat{C}_0 = \frac{a(1+\overline{C_1})}{|1+C_1|^2 - R_1^2}, \quad \widehat{R}_0 = \frac{|a|R_1}{R_1^2 - |1+C_1|^2}$$

It is $\subseteq V_0$ if and only if $|\widehat{C}_0 - C_0| + \widehat{R}_0 \leq R_0$, i.e., if and only if $a \in E_1$. It is equal to V_0 if and only if $\widehat{C}_0 = C_0$ and $\widehat{R}_0 = R_0$, i.e., if and only if either

(4.9)
$$C_1 \neq -1, \ a = \tilde{a}_1 \text{ and } |C_0|R_1 = R_0|1 + C_1| \\ \text{or } C_1 = -1, \ C_0 = 0 \text{ and } |a| = R_0R_1.$$

Since $\widehat{E}_{1,\delta}$ is a closed, bounded set in \mathbb{C} with $a/(1+V_1) \neq V_0$ for all $a \in \widehat{E}_{1,\delta}$, we have $\widehat{E}_{1,\delta} \in \mathcal{E}(V_1, V_0)$. Since $s_1 \circ s_2(V_0) \subseteq s_1(V_1)$ this proves that $\langle \widehat{E}_{1,\delta}, E_2 \rangle \in \mathcal{E}(V_0)$.

Let $|1+C_0| < R_0$. Then $a/(1+V_0)$ is the exterior of a disk. Indeed, $a/(1+V_0^\circ) = B(\hat{C}_1, \hat{R}_1)^c$ where

(4.10)
$$\widehat{C}_1 = \frac{a(1+\overline{C_0})}{|1+C_0|^2 - R_0^2}, \quad \widehat{R}_1 = \frac{|a|R_0}{R_0^2 - |1+C_0|^2}.$$

It is $\subseteq V_1$ if and only if $|\hat{C}_1 - C_1| + R_1 \leq \hat{R}_1$, i.e., if and only if $a \in E_2$. It is equal to V_1° if and only if $\hat{C}_1 = C_1$ and $\hat{R}_1 = R_1$, i.e., if and only if either

(4.11)
$$\begin{array}{c} -1 \in V_0^\circ, \ C_0 \neq -1, \ a = \tilde{a}_2 \ \text{and} \ |C_1|R_0 = R_1|1 + C_0| \\ \text{or} \ C_0 = -1, \ C_1 = 0 \ \text{and} \ |a| = R_0 R_1. \end{array}$$

These cases are excluded for $a \in \widehat{E}_{2,\delta}$. From (2.10) we see that $0 \notin \overline{E_2}$ when $|1 + C_0| < R_0$. We need to check whether $a_{2n_k}/(1 + V_0) \to V_1$ is possible for $a_{2n_k} \in E_2$ if $a_{2n_k} \to \infty$. But this is no problem since V_0 is bounded, and thus $\lim_{a\to\infty} a/(1+V_0) = \{\infty\}$. Therefore $\widetilde{E}_{2,\delta} \in \mathcal{E}(V_0, V_1)$, and thus $\langle \widehat{E}_{2,\delta}, E_1 \rangle \in \mathcal{E}(V_1)$.

Next, let $|1 + C_0| = R_0$. Then for $a \neq 0$, $a/(1 + V_0)$ is the half plane given by (4.6). Hence $\langle E_2, E_1 \rangle \in \mathcal{E}(V_1)$ and $a/(1 + V_0) \subseteq V_1$ if and only if

$$\operatorname{Re}\left(C_1\frac{1+C_0}{|1+C_0|}e^{-i\theta}\right) + R_1 \leq \frac{|a|}{2R_0} \quad \text{where } \theta := \arg a,$$

which gives the expression for E_2 in this case. $(0 \notin E_2 \text{ since } -1 \in V_0.)$

Finally, let $|1+C_0| > R_0$. Then $a/(1+V_0) = B(\widehat{C}_1, -\widehat{R}_1)$ for $a \neq 0$, where \widehat{C}_1 and \widehat{R}_1 are given by (4.10). Therefore $a/(1+V_0) \subseteq V_1$ if and only if $|\widehat{C}_1-C_1| \ge R_1+|\widehat{R}_1|$, i.e., if and only if $a \in E_2$. Moreover, $\langle E_2, E_1 \rangle \in \mathcal{E}(V_1)$.

Proof of Theorem 2.5. A. The expressions for E_1 and E_2 follow from Lemma 4.5. We need to check that $E_k^{\circ} \neq \emptyset$ for k = 1, 2. This clearly holds for E_1 since $|C_0| < R_0$ and $|1 + C_1| < R_1$, and thus $0 \in E_1^{\circ}$. It is also clear that $E_2^{\circ} \neq \emptyset$ if $C_0 = -1$ or if $R_0 = |1 + C_0|$. Let $R_0 < |1 + C_0|$ and $C_1 \neq 0$. Then $\tilde{a}_2 \neq 0$ and $-t\tilde{a}_2 \in E_2^{\circ}$ for all t > 0 sufficiently large. If $R_0 < |1 + C_0|$ and $C_1 = 0$, then $\tilde{a}_2 = 0$ and $E_2 = \{a; |a| \ge R_1(|1 + C_0| + R_0)\}$, so again $E_2^{\circ} \neq \emptyset$. If $R_0 > |1 + C_0| > 0$ and $C_1 \neq 0$, then $t\tilde{a}_2 \in E_2^{\circ}$ for all t > 0 sufficiently large, and thus $E_2^{\circ} \neq \emptyset$. Finally, if $R_0 > |1 + C_0|$ and $C_1 = 0$, then $\tilde{a}_2 = 0$ and all a with $|a| \ge R_0^2 - |1 + C_0|^2$ are $\in E_2$.

Let $K(a_n/1)$ be a continued fraction from $\langle E_1, E_2 \rangle$. If $\operatorname{rad}(S_{2n}(V_0)) \to 0$ or $\operatorname{rad}(S_{2n}(W_0)) \to 0$ or $\operatorname{diam}(S_{2n}(Y_0)) \to 0$, then $K(a_n/1)$ clearly converges generally. Assume in the proof of parts B and C below that $\operatorname{diam}(S_{2n}(Y_0)) \to \tilde{d} > 0$, and thus $\operatorname{rad}(S_{2n}(V_0)) \to R > 0$ and $\operatorname{rad}(S_{2n}(W_0)) \to R^* > 0$.

B. We first observe that $W_0 = B(-1 - C_1, R_1)$ and $W_1 = \overline{B(-1 - C_0, R_0)^c}$ in this case. By Lemma 4.1 the element sets E_1 and E_2 do not change if we replace $\langle V_0, V_1 \rangle$ by $\langle W_0, W_1 \rangle$ (although their representation (2.10) changes), and neither do the conditions in (2.11). Indeed, $\widehat{E}_{1,\delta}$ and $\widehat{E}_{2,\delta}$ do not change either, since

$$\tilde{a}_k = C_{k-1}(1+C_k)(1-R_k^2/|1+C_k|^2) = (-1-C_k)(-C_{k-1})(1-R_{k-1}^2/|C_{k-1}|^2)$$

when $|C_{k-1}|R_k = R_{k-1}|1 + C_k| > 0$. Therefore $\widehat{E}_{1,\delta} \in \mathcal{E}(W_1, W_0) \cap \mathcal{E}(V_1, V_0)$ by Lemma 4.5.

There is one condition that is changed, though, and that is the condition $-1 \notin V_0^{\circ}$, which is equivalent to $0 \in W_1$. This means that if $-1 \notin V_0^{\circ}$, then $E_2 \in \mathcal{E}(V_0, V_1)$, whereas, by (4.11), $E_2 \notin \mathcal{E}(W_0, W_1)$ if also $-1 \in W_0^{\circ}$ and $|C_1|R_0 = R_1|1 + C_0| \geq 0$. However, this case cannot occur since

 $-1 \notin V_0^\circ \ \Leftrightarrow \ |1+C_0| \geq R_0 \quad \text{and} \quad -1 \in W_0^\circ \ \Leftrightarrow \ |C_1| < R_1,$

which give $|C_1|R_0 < R_1|1+C_0|$. Therefore, also now $\widehat{E}_{2,\delta} \in \mathcal{E}(W_0, W_1) \cap \mathcal{E}(V_0, V_1)$ by Lemma 4.5. This means that $Z_k \in \partial^{\dagger} V_k$ by Theorem 3.5B. Since $\partial^{\dagger} V_0 = -1 - \partial^{\dagger} V_1$, the convergence follows from Theorem 3.5A, both if $K(a_n/1)$ is from $\langle \widehat{E}_{1,\delta}, E_2 \rangle$ or from $\langle E_1, \widehat{E}_{2,\delta} \rangle$.

C. By the proof of part B, $Z_0 \subseteq \partial^{\dagger} V_0$ when $K(a_n/1)$ is from $\langle \widehat{E}_{1,\delta}, E_2 \rangle$, and $Z_1 \subseteq \partial^{\dagger} V_1$ when $K(a_n/1)$ is from $\langle E_1, \widehat{E}_{2,\delta} \rangle$. The result follows therefore from Theorem 3.5A.

D: Let $K(a_n/1)$ from $\langle E_1, E_2 \rangle$ converge generally to c. Then $c_{2n} \to c$ and $\overline{Z}_k = Z_k$ for k = 0, 1 by Theorem 1.4D. Therefore $Z_0 \subseteq \overline{V_0^c} \cap (-1 - V_1)$ (Theorem 1.4A). It follows therefore from Theorem 1.4E and C with k = 0 that also $c_{2n-1} \to c$. \Box

Proof of Theorem 2.7. Let $k \in \{1, 2\}$ be fixed. First let $-1 \notin \partial V_k$. Then $g_k < 1$, $|\alpha_k| < \pi/2$ and

$$a/(1+V_k) = B(\tilde{C}_k, \tilde{R}_k), \quad \tilde{C}_k := \frac{a \, e^{-i\alpha_k}}{2(1-g_k)\cos\alpha_k}, \quad \tilde{R}_k := \frac{|a|}{2(1-g_k)\cos\alpha_k}$$

for $a \neq 0$. This set is contained in V_{k-1} if and only if $\operatorname{Re}(\tilde{C}_k e^{-i\alpha_{k-1}}) - \tilde{R}_k \geq -g_{k-1} \cos \alpha_{k-1}$, which proves the expression for E_k in this case. Next let $-1 \in \partial V_k$. Then $1/(1+V_k) = H(0, -\alpha_k)$. Hence $a/(1+V_k) \subseteq V_{k-1}$ for $a \neq 0$ if and only if $\arg(a) = \alpha_{k-1} + \alpha_k$. Since either $g_k = 1$ or $|\alpha_k| = \pi/2$ when $-1 \in \partial V_k$, the expression (2.15) for E_k is still valid. Therefore $\langle E_1, E_2 \rangle$ given by (2.15) are the element sets corresponding to $\langle V_0, V_1 \rangle$.

If $0, -1 \notin V_k$ for both k = 0 and k = 1, then the convergence follows from the twin version of the multiple parabola theorem proved in [5]. (See Remark 2.8.3.) Otherwise, by (2.14), there exist $\tilde{g}_0, \tilde{g}_1, \tilde{\alpha}_0$ and $\tilde{\alpha}_1$ such that

$$\begin{split} |\tilde{\alpha}_0| &< \frac{\pi}{2}, \quad |\tilde{\alpha}_1| < \frac{\pi}{2} \quad \text{and} \ \tilde{\alpha}_0 + \tilde{\alpha}_1 = \alpha_0 + \alpha_1, \\ 0 &< \tilde{g}_0 < 1, \quad 0 < \tilde{g}_1 < 1 \quad \text{and} \ \tilde{g}_k(1 - \tilde{g}_{k-1}) \ge g_k(1 - g_{k-1}) \ \text{for} \ k = 1, 2. \end{split}$$

Let \tilde{E}_1 and \tilde{E}_2 be given by (2.15) with g_0 , g_1 , α_0 and α_1 replaced by \tilde{g}_0 , \tilde{g}_1 , $\tilde{\alpha}_0$ and $\tilde{\alpha}_1$. Then $E_1 \subseteq \tilde{E}_1$ and $E_2 \subseteq \tilde{E}_2$, and the convergence follows again from the twin version of the multiple parabola theorem.

Proof of Theorem 1.3. Since $|C_k|R_{k+1} \neq R_k|1 + C_{k+1}|$ for k = 0 or k = 1, we have $\widehat{E}_{k+1,\delta} = E_{k+1}$ in (2.11) for this k, and $K(a_n/1)$ converges generally by Theorem 2.5B.

Proof of Theorem 1.1. A. Since $E_2^{\circ} = \emptyset$ if and only if $E_2 = \{\tilde{a}_2\}$ in this case, which happens if and only if $|C_1|R_0 = |1 + C_0|R_1$, it follows from Theorem 2.1 that $K(a_n/1)$ converges.

B. By (2.7) we always have $-1 \notin V_0$ when $E_2^{\circ} \neq \emptyset$. Hence $\tilde{E}_{2,\delta} = E_2$, and $K(a_n/1)$ converges generally by Theorem 2.3B. Theorem 1.4D shows therefore that its even part converges, and Theorem 1.4E shows that its odd part converges.

C. It follows from Theorem 1.3 that $K(a_n/1)$ converges generally in this case. Therefore its even part converges by Theorem 1.4D. The convergence of $K(a_n/1)$ follows from Theorem 1.4E.

D. (2.14) holds under our conditions, and the result follows from Theorem 2.7. $\hfill \Box$

References

- Jacobsen, Lisa, Some periodic sequences of circular convergence regions, Lecture Notes in Math. No 932, Springer-Verlag (1982), 87–98. MR690456 (84c:40003)
- Jacobsen, Lisa, General convergence of continued fractions, Trans. Amer. Math. Soc. 294(2) (1986), 477–485. MR825716 (87j:40004)
- Jacobsen, Lisa and Thron, W.J., Oval Convergence Regions and Circular Limit Regions for Continued Fractions K(a_n/1), Lecture Notes in Math., Springer-Verlag **1199** (1986), 90–126. MR870246 (88c:40004)
- Jacobsen, Lisa and Thron, W.J., Limiting structures for sequences of linear fractional transformations, Proc. Amer. Math. Soc. 99 (1987), 141–146. MR866444 (88d:40010)

- Jones, William B. and Thron, W.J., Convergence of continued fractions, Can. J. Math. 20 (1968), 1037–1055. MR0230888 (37:6446)
- Jones, William B. and Thron, W.J., Twin-convergence regions for continued fractions K(a_n/1), Trans. Amer. Math. Soc. 150 (1970), 93–119. MR0264043 (41:8640)
- Jones, William B. and Thron, W.J., Continued Fractions. Analytic Theory and Applications. Encyclopedia of Mathematics and Its Applications 11, Addison-Wesley Publishing Company, 1980. MR0595864 (82c:30001)
- Lane, R.E., The Convergence and Values of Periodic Continued Fractions, Bull. Amer. Math. Soc. 51 (1945), 246–250. MR0011748 (6:211b)
- 9. Lorentzen, Lisa, Convergence criteria for continued fractions $K(a_n/1)$ based on value sets, Contemporary Mathematics **236** (1999), 205–255. MR1665372 (2000i:30006)
- Lorentzen, Lisa, Möbius transformations mapping the unit disk into itself, The Ramanujan J. Math. 13 (2007), 253–263. MR2281165
- 11. Lorentzen, Lisa and Ruscheweyh, St., Simple convergence sets for continued fractions $K(a_n/1)$, Math. Anal. and Appl. **179(2)** (1993), 349–370. MR1249825 (95b:40001)
- Lorentzen, Lisa and Waadeland, Haakon, Continued Fractions with Applications, Studies in Computational Mathematics 3, Elsevier Science Publishers B.V., 1992. MR1172520 (93g:30007)

Lisa Lorentzen has changed her name from Lisa Jacobsen.

DEPARTMENT OF MATHEMATICAL SCIENCES, NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, N-7491 TRONDHEIM, NORWAY