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CONTINUED FRACTIONS
WITH CIRCULAR TWIN VALUE SETS

LISA LORENTZEN

Abstract. We prove that if the continued fraction K(an/1) has circular twin
value sets 〈V0, V1〉, then K(an/1) converges except in some very special cases.
The results generalize previous work by Jones and Thron.

1. Introduction and main result

A pair 〈V0, V1〉 of sets from Ĉ := C ∪ {∞} is called a pair of twin value sets for
the continued fraction

(1.1) K(an/1) :=
a1

1 +
a2

1 +
a3

1 + . . .
:=

a1

1 +
a2

1 +
a3

1 + . . .

, an ∈ C \ {0}

if both Vk and its complement V c
k in Ĉ are non-empty for k = 0, 1 and

(1.2) a2n−1/(1 + V1) ⊆ V0 and a2n/(1 + V0) ⊆ V1 for n = 1, 2, 3, . . . .

Note that we do not require a2n+k ∈ Vk−1 for k = 1, 2 as was done in the work by
Jones and Thron; see for instance their book [7, p. 64]. For given value sets we
further define the corresponding element sets 〈E1, E2〉 by

(1.3) E1 := {a ∈ C; a/(1 + V1) ⊆ V0}, E2 := {a ∈ C; a/(1 + V0) ⊆ V1}.

Here, by definition, 0 �∈ E1 if −1 ∈ V1 (the closure of V1 in Ĉ) and 0 �∈ E2 if
−1 ∈ V0. The twin element sets 〈E1, E2〉 are true if Ek \ {0} �= ∅ for k = 1 and 2.
We also say that 〈V0, V1〉 are twin value sets for 〈E1, E2〉. For convenience we shall
always let V2 := V0, so that Ek = {a ∈ C; a/(1 + Vk) ⊆ Vk−1} for k = 1, 2.

In this paper we restrict the value sets to be closed circular domains; that is, they
are closures of simply connected, open, non-empty domains on the Riemann sphere
Ĉ, bounded by a generalized circle. The points 0,−1,∞ are special in the classical
continued fraction theory. (See (1.6).) We shall therefore distinguish between closed
domains V where

• ∞ �∈ V (disks),
• ∞ on the boundary ∂V of V (half planes),
• ∞ in the interior V ◦ of V (complements of disks).
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4288 LISA LORENTZEN

We address the problem: when does K(an/1) from 〈E1, E2〉 (i.e. all a2n−1 ∈ E1 and
all a2n ∈ E2) converge? By convergence we mean that the sequence of approximants
{cn} of K(an/1) converges to a c ∈ Ĉ, where

cn := Sn(0) and Sn(z) :=
a1

1 +
a2

1 + · · ·+
an

1 + z
,

i.e., Sn := s0 ◦ s1 ◦ s2 ◦ · · · ◦ sn; s0(z) := z, sk(z) :=
ak

1 + z
.

(1.4)

We say that the even (odd) part of K(an/1) converges if {c2n} ({c2n+1}) converges
in Ĉ. A number of papers has been written on this topic. See for instance [7, chapter
4] and the references therein. In particular, the paper [6] by Jones and Thron,
published in this journal, gives a very nice and useful presentation of sufficient
conditions for convergence. However, these results can be improved, as we shall
show in this paper. The very special case where 0 ∈ ∂V0 and −1 ∈ ∂V1 or vice
versa still needs some extra attention, though (see Example 2.9). We shall prove:

Theorem 1.1. Let 〈V0, V1〉 be closed circular twin value sets with corresponding
element sets 〈E1, E2〉 for the continued fraction K(an/1). Then the following state-
ments are true:

A. Let V0 and V1 be disks and E◦
2 �= ∅. Then K(an/1) converges to a c ∈ V0.

B. Let V0 be a disk, V1 be a half plane and E◦
2 �= ∅. Then K(an/1) converges

to a c ∈ V0.
C. Let V0 be a disk and V1 be the complement of a disk with respective centers

Ck and radii Rk such that |Ck|Rk+1 �= Rk|1+Ck+1| for k = 0 or k = 1 and
0 �∈ ∂†V1 := ∂V1 ∩ (−1−∂V0). Then the even part of K(an/1) converges to
a c ∈ V0. If moreover −1 �∈ V0 \ (−1 − V ◦

1 ), then K(an/1) itself converges
to c.

D. Let V0 and V1 be half planes with 0, −1 �∈ ∂†V1. Then the even and odd
parts of K(an/1) converge to finite values ∈ V0. Moreover, K(an/1) itself
converges if and only if

(1.5)
∞∑

n=1

|bn| = ∞ where b2n :=
a1a3 · · · a2n−1

a2a4 · · · a2n
, b2n+1 :=

a2a4 · · · a2n

a1a3 · · · a2n+1
.

Remarks 1.2.
1. Since K∞

n=1(an/1) converges in Ĉ if and only if K∞
n=2(an/1) converges in

Ĉ, we may interchange V0 and V1.
2. Theorem 1.1 also covers cases such as, for instance, V0 a half plane and V1

a complement of a disk, since 〈V0, V1〉 are twin value sets for the continued
fraction K(an/1) if and only if 〈−1 − V c

1 , −1 − V c
0 〉 are twin value sets

for K(an/1) (see Lemma 4.1). This was also pointed out by Jones and
Thron in [6]. Indeed, if V0 or V1 contains more than one element, then
Y0 := V0 \ (−1 − V1)◦ �= ∅ and Y1 := V1 \ (−1 − V0)◦ �= ∅, so also 〈Y0, Y1〉
are twin value sets for K(an/1), [9, prop. 5.4].

3. It is a well established fact [7, thm. 4.53, p. 128] that (1.5) holds if {an}
has a bounded subsequence.

The classical convergence concept requires that Sn(0) → c, where by (1.4),

(1.6) cn = Sn−1(an) = Sn(0) = Sn+1(∞) = Sn+2(−1) = Sn+3(−1 − an+3).
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In [2] a more general concept of convergence was introduced: we require that there
exist two sequences {un} and {vn} from Ĉ such that

(1.7) lim Sn(un) = limSn(vn) = c and lim inf d(un, vn) > 0,

where d(∗, ∗) denotes the chordal metric on the Riemann sphere Ĉ; i.e.,

(1.8) d(z, w) =
2|z − w|√

1 + |z|2
√

1 + |w|2
if z, w ∈ C

with the natural limit forms if z and/or w is = ∞. If (1.7) holds, we say that
K(an/1) converges generally to c. Then, by [2], there exists an exceptional sequence
{z†n} ⊆ Ĉ such that

(1.9) lim Sn(zn) = c whenever lim inf d(zn, z†n) > 0.

If c �= ∞, we can for instance use z†n := ζn := S−1
n (∞) for all n. Or more generally,

{S−1
n (q)} is an exceptional sequence for every q �= c, also if c = ∞. All the

exceptional sequences have the same asymptotic behavior.
Classical convergence implies general convergence whereas the converse does not

hold. Indeed, there are generally convergent continued fractions K(an/1) where
{z†n} has limit points at 0, −1 and ∞ which destroy the classical convergence
of K(an/1). However, if K(an/1) also converges in the classical sense, then it
converges to the same value. It is also clear that if the even and odd parts of
K(an/1) converge to distinct values in the classical sense, then they also converge
generally to the same two distinct values.

One might expect to get a nicer theorem with general convergence. However,
Theorem 1.1 is already good, except for the disk – complement of disk case. For
this case it really pays off to change over to general convergence (here B(C, R)
denotes a closed circular disk with center at C ∈ C and radius R > 0):

Theorem 1.3. Let V0 := B(C0, R0) and V1 := B(C1, R1)c be twin value sets
for the continued fraction K(an/1), where 0 �∈ ∂†V1 := ∂V1 ∩ (−1 − ∂V0) and
|Ck|Rk+1 �= Rk|1 + Ck+1| for k = 0 or k = 1. Then K(an/1) converges generally
to a c ∈ V0.

The final result in this section describes cases where classical convergence follows
from general convergence. We still use the notation ζn := S−1

n (∞).

Theorem 1.4. Let 〈V0, V1〉 be closed twin value sets for the continued fraction
K(an/1) with (V0 ∪ V1)◦ �= ∅. Let K(an/1) converge generally to c, let q �= c and
let Z̃k be the set of limit points for {S−1

2n+k(q)}. Then the following statements hold
for fixed k ∈ {1, 2}.

A. c ∈ V0 \ (−1 − V ◦
1 ) and Z̃k ⊆ (−1 − Vk−1) \ V ◦

k .
B. If −1 �∈ Z̃k or 0 �∈ Z̃k, then S2n+k(0) → c. If ∞ �∈ Z̃k, then S2n+k−1(0) →

c.
C. Let ε > 0 and n0 ∈ N. If for each n ≥ n0, either d(a2n+k−1, Z̃k) ≥ ε or

d(−1 − a2n+k+2, Z̃k) ≥ ε, then S2n+k−1(0) → c.
D. If V0 is bounded, then {ζn} is an exceptional sequence for {Sn} and S2n(0)

→ c.
E. If −1 �∈ V0 \ (−1 − V ◦

1 ), then S2n+1(0) → c.
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In section 2 we shall give some explicit expressions for the corresponding ele-
ment sets 〈E1, E2〉 and some stronger convergence results. Section 3 contains some
intermediate results, and in section 4 we prove the results in sections 1 and 2.

Notation. We shall use the notation introduced so far, plus some extra. For
convenience we list a few of them here:

• A, A◦, ∂A and Ac are the closure, the interior, the boundary and the
complement of a set A in Ĉ.

• D is the open unit disk {z ∈ C; |z| < 1}.
• [z1, z2] is the closed line segment between the two points z1 and z2 in C.

Moreover, a[r,∞) := {z = ua; u ≥ r} for a ∈ C \ {0} and r ∈ R.
• B(a, r) := {z ∈ C; |z − a| ≤ r} and Bd(a, r) := {z ∈ Ĉ; d(z, a) ≤ r} for

a ∈ C and r > 0.
• H(r, α), where r, α ∈ R, denotes the closed half plane with L := eiα[r,∞) ⊆

H(r, α), whose boundary ∂H(r, α) is the line through r eiα orthogonal to
L.

• rad(A) is the euclidean radius of a circular set A ⊆ Ĉ. rad(A) := ∞ if
∞ ∈ A.

• diam(A) is the euclidean diameter of a set A ⊂ Ĉ.
• dist(z, A) (d(z, A)) denotes the euclidean (chordal) distance between a point

z ∈ Ĉ and a set A ⊆ Ĉ, and dist(A, B) (d(A, B)) denotes the euclidean
(chordal) distance between two sets A, B ⊆ Ĉ.

• For convenience, V2 := V0, W2 := W0, E3 := E1, E0 = E2, etc. for twin
quantities; that is, they are counted modulo 2.

• sm denotes the linear fractional transformation am/(1 + z), s∗m(z) := a∗
m/

(1 + z) and so on, and Sn := s1 ◦ s2 ◦ · · · ◦ sn.
• ∂†Vk := ∂Vk ∩ (−1 − ∂Vk+1) and ∂∗Vk := ∂Vk ∩ (−1 − Vk+1) for k = 0, 1.

Clearly, ∂†V0 = −1 − ∂†V1, and the condition 0 �∈ ∂Vk, −1 �∈ ∂Vk+1 can be
written 0 �∈ ∂†Vk, or equivalently, −1 �∈ ∂†Vk+1.

• ζn := S−1
n (∞), cn := Sn(0) and Zk is the (closed) set of limit points for

{ζ2n+k}.
• W0 := −1 − V c

1 , W1 := −1 − V c
0 , Y0 := V0 \ (−1 − V1)◦ and Y1 := V1 \

(−1 − V0)◦ so that 〈W0, W1〉 and 〈Y0, Y1〉 are alternative closed twin value
sets (Remark 1.2.2).

•
∑′ Pn < ∞ shall mean that there exists an n0 ∈ N such that

∑∞
n=n0

Pn <
∞ for the non-negative numbers Pn. Hence Pn = ∞ is possible for finitely
many n.

2. Explicit element sets and more detailed convergence criteria

In applications it is useful to know the corresponding element sets 〈E1, E2〉 ex-
plicitly. We have therefore listed these sets below, along with some more specific
convergence criteria for continued fractions K(an/1) with circular twin value sets.
Of course we want as few extra conditions as possible, but some situations have to
be treated separately:

• an → ∞. The if and only if part of Theorem 1.1D shows that extra con-
ditions are needed in this case. This is true whether we want classical or
general convergence.
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• a2n−1 → ã1 ∈ E1 \ {0} and a2n → ã2 ∈ E2 \ {0} where s̃1 ◦ s̃2 is an
elliptic transformation. If |a2n+k − ãk| → 0 fast enough for k = 1 and
k = 2, then K(an/1) diverges generally. s̃1 ◦ s̃2 is elliptic if ã1 = −w0w1

and ã2 = −(1 + w0)(1 + w1) for some w0, w1 ∈ C with w0(1 + w1) =
eiθw1(1 + w0) where eiθ �= 1, [1]. This can happen only if both s̃1(V1) = V0

and s̃2(V0) = V1. (See also Lemma 4.2.)
• ãk := 0 ∈ Ek and ãk+1 := −1 ∈ Ek+1 for k = 1 or 2. Also now K(an/1)

with a2n+k → ãk for k = 1, 2 may converge or diverge depending on how
{a2n+k} approaches ãk (see Example 2.9).

The disk – disk case.
Let Vk := B(Ck, Rk) for some Ck ∈ C and Rk > 0 for k = 0, 1. Evidently Ek = ∅

if −1 ∈ Vk, so

(2.1) |1 + Ck| > Rk for k = 0, 1

is a necessary condition for 〈E1, E2〉 to be true element sets corresponding to
〈V0, V1〉. Then we get the following generalization of [6, thm. 5.1]:

Theorem 2.1. Let Vk := B(Ck, Rk) for k = 0, 1 where Ck ∈ C and Rk > 0 satisfy
(2.1) and

(2.2) |Ck−1|Rk ≤ |1 + Ck|Rk−1

for k = 1, 2. If (2.2) holds with equality for both k = 1 and k = 2, we further
assume that σ := s̃1 ◦ s̃2 is non-elliptic, where

(2.3) ãk := Ck−1(1 + Ck)(1 − R2
k/|1 + Ck|2).

Then every continued fraction K(an/1) from 〈E1, E2〉 converges, where

(2.4) Ek :=
{

a ∈ C; |a − ãk| +
Rk

|1 + Ck|
|a| ≤ Rk−1

|1 + Ck|
(|1 + Ck|2 − R2

k)
}

.

Remarks 2.2.
1. 〈E1, E2〉 are the element sets corresponding to 〈V0, V1〉. They are true

element sets if and only if (2.1) and (2.2) hold. Condition (2.2) is therefore
only present to make 〈E1, E2〉 true when (2.1) holds. Ek is a one-point set
if and only if Ek = {ãk} as given by (2.3). This happens if and only if
|Ck−1|Rk = |1 + Ck|Rk−1, which happens if and only if a/(1 + Vk) = Vk−1

for an a ∈ Ek, in which case a = ãk �= 0. (See Lemma 4.3.)
2. If Ek contains more than one point, then Ek is a closed convex domain

bounded by a cartesian oval with foci at 0 and ãk [3, 12, remark 5, p. 142],
and E◦

k �= ∅. If Ck−1 = 0, this oval reduces to a circle centered at the origin.
3. Divergence only occurs if and only if Ek = {ãk} for k = 1, 2 and σ := s̃1◦ s̃2

is elliptic. This means that K(an/1) converges in the classical sense if and
only if it converges in the general sense in the disk-disk case.

The disk – half plane case.
Let V0 := B(C0, R0) and V1 := {z ∈ C; Re(z e−iα) ≥ h cosα} ∪ {∞} =

H(h cos α, α) for some C0 ∈ C, R0 > 0, h, α ∈ R. It is clear that a/(1 + V1) ⊆ V0

for a �= 0 only if −1 �∈ V1 and 0 ∈ V0, and that a/(1 + V0) ⊆ V1 for a �= 0 only if
−1 �∈ V ◦

0 . Hence we require that

(2.5) |C0| ≤ R0 ≤ |1 + C0|, |α| < π/2 and h > −1.
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But this leaves the possibility of 0 ∈ ∂V1 and −1 ∈ ∂V0, a situation that requires
caution. We therefore need extra conditions if 0 ∈ ∂†V1 := ∂V1 ∩ (−1− ∂V0). Still,
we get the following generalization of [6, thm. 5.2]:

Theorem 2.3. Let V0 := B(C0, R0) and V1 := H(h cosα, α) where C0 ∈ C, R0 > 0
and α, h ∈ R satisfy (2.5), and let

(2.6) a∗
1 := 2C0e

iα(1 + h) cosα, a∗
2 := 2(1 + C0)h eiα cos α

and
E1 := {a ∈ C; |a − a∗

1| + |a| ≤ 2R0(1 + h) cosα},

E2 :=

⎧⎪⎨⎪⎩
{a ∈ C; |a|R0 − Re(a(1 + C0)e−iα) ≤ −h(|1 + C0|2 − R2

0) cosα}
if |1 + C0| > R0,

(1 + C0)eiα[max{0, 2h cosα}, ∞) \ {0} if |1 + C0| = R0.

(2.7)

Furthermore, let

Ẽ1,δ :=

{
E1 \ B(a∗

1, δ) if R0 = |C0|,
E1 otherwise,

Ẽ2,δ :=

{
E2 \ B(a∗

2, δ) if R0 = |1 + C0| and h ≥ 0,

E2 otherwise

(2.8)

where 0 < δ < |a∗
1| if C0 �= 0. Then the following statements are true:

A. Every continued fraction K(an/1) from 〈E1, Ẽ2,δ〉 converges generally.
B. If 0 �∈ ∂†V1, then every continued fraction K(an/1) from 〈Ẽ1,δ, E2〉 con-

verges generally.
C. Let ε > 0. If K(an/1) is a continued fraction from 〈Ẽ1,δ, E2〉 such that for

each n from some n0 on, either dist(−1−a2n, ∂∗V0) ≥ ε or dist(a2n−1, ∂
∗V0)

≥ ε, then K(an/1) converges generally.
D. Let K(an/1) from 〈E1, E2〉 converge generally to c. Then c2n → c. If

moreover 0 ∈ V ◦
1 or −1 �∈ ∂V0 or lim inf d(a2n−1, V c

0 ∩ (−1−V1)) > 0, then
cn → c.

Remarks 2.4.

1. 〈E1, E2〉 are the element sets corresponding to 〈V0, V1〉. If R0 = |C0|, then
E1 is the closed line segment [0, a∗

1]. Otherwise, ∂E1 is an ellipse with foci
at a∗

1 and the origin. ∂E1 reduces to a circle if C0 = 0.
2. If |1 + C0| = R0, then E2 is a ray. Otherwise, E◦

2 �= ∅ and ∂E2 is a
hyperbola.

3. If −1 �∈ ∂V0 or 0 ∈ V ◦
1 , then Ẽ2,δ = E2, so every continued fraction K(an/1)

from 〈E1, E2〉 converges generally by part A in this case. Let −1 ∈ ∂V0

and 0 �∈ V ◦
1 . If 0 �∈ ∂V1 and 0 ∈ V ◦

0 , then Ẽ1,δ = E1, and every continued
fraction from 〈E1, E2〉 still converges generally by part B.

The disk – complement of disk case.
Let V0 = B(C0, R0) and V1 = B(C1, R1)c. This time ∞ �∈ V0 and ∞ ∈ V ◦

1 , so
we evidently need that 0 ∈ V ◦

0 and −1 �∈ V1 to get true element sets; that is,

(2.9) |C0| < R0 and |1 + C1| < R1.
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Theorem 2.5. Let V0 := B(C0, R0) and V1 := B(C1, R1)c where Ck ∈ C and
Rk > 0 satisfy (2.9), and let

E1 :=

{
{a; |a − ã1| + |a| R1

|1+C1| ≤
R0

|1+C1| (R
2
1 − |1 + C1|2)} if C1 �= −1,

B(0, (R0 − |C0|)R1) if C1 = −1,

E2 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{a; |a − ã2| − |a| R0

|1+C0| ≥
R1

|1+C0| (|1 + C0|2 − R2
0)} \ {0} if R0 < |1 + C0|,

{a; |a| R0
|1+C0| − |a − ã2| ≥ R1

|1+C0| (R
2
0 − |1 + C0|2)} if R0 > |1 + C0| > 0,

{a = r eiθ; r
2 ≥ Re(C1(1 + C0)e−iθ) + R0R1} \ {0} if R0 = |1 + C0|,

{a; |a| ≥ R0(R1 + |C1|)} if C0 = −1,

(2.10)

where ãk is given by (2.3). Further let Ê1,δ be given by (2.11), and let Ê2,δ := E2

if −1 �∈ V ◦
0 and Ê2,δ be given by (2.11) otherwise, where

(2.11) Êk,δ :=

⎧⎪⎨⎪⎩
Ek \ B(ãk, δ)◦ if |Ck−1|Rk = Rk−1|1 + Ck| > 0,

Ek \ {a ∈ C; ||a| − R0R1| < δ} if Ck−1 = 1 + Ck = 0,

Ek otherwise

for given δ > 0 so small that Ê1,δ �= ∅. Then the following statements are true.
A. 〈E1, E2〉 are the element sets corresponding to 〈V0, V1〉, and E◦

k �= ∅ for
k = 1, 2.

B. Let 0 �∈ ∂†V1. Then every continued fraction K(an/1) from 〈Ê1δ, E2〉 or
from 〈E1, Ê2,δ〉 converges generally.

C. Let ε > 0. If K(an/1) is a continued fraction from 〈Ê1,δ, E2, 〉 such that for
each n from some n0 ∈ N on, either dist(a2n−1, ∂

†V0) ≥ ε or
dist(−1 − a2n, ∂†V0) ≥ ε, then K(an/1) converges generally. If K(an/1)
is a continued fraction from 〈E1, Ê2,δ, 〉 such that for each n from some
n0 ∈ N on, either dist(−1 − a2n+1, ∂

†V1) ≥ ε or dist(a2n, ∂†V1) ≥ ε, then
K(an/1) converges generally.

D. Let K(an/1) from 〈E1, E2〉 converge generally to c. Then c2n → c. Let
ε > 0 and n0 ∈ N. If −1 �∈ V0 \ (−1 − V ◦

1 ) or for each n ≥ n0 either
dist(a2n−1, V c

0 ∩ (−1 − V1)) ≥ ε or d(−1 − a2n+2, V c
0 ) ≥ ε, then K(an/1)

converges to c in the classical sense.

Remarks 2.6.
1. E1 is bounded by a cartesian oval with foci at 0 and ã1. If C1 = −1, this

oval reduces to a circle. E2 is an unbounded set.
2. Jones and Thron [6, thm. 5.4], [7, thm. 4.11, p.72], proved the expressions

for E1 and E2 for the case |C0| < R0 �= |1 + C0| and |1 + C1| < R1 ≤ |C1|.
Theorem 2.5 generalizes their result.

3. This disk - complement of disk case is quite special in the following sense:
the case a/(1 + Vk) = Vk−1 does not necessarily occur only for a ∈ ∂Ek.
Therefore Êk,δ is not necessarily simply connected or even connected. This
means that we do not necessarily have that

Gk ⊆ E◦
k for k = 1, 2 ⇒ 〈G1, G2〉 are twin convergence sets

as otherwise this is a normal feature for element sets 〈E, E〉 corresponding
to simple value sets 〈V, V 〉.
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The half plane – half plane case.
Let V0 and V1 be closed half planes,

(2.12) Vk = {z ∈ C; Re(z e−iαk) ≥ −gk cos αk} ∪ {∞} = H(−gk cos αk, αk)

for some αk, gk ∈ R. Then Ek �= ∅ only if 0 ∈ Vk−1, and −1 �∈ V ◦
k . Therefore we

require

(2.13) |αk| ≤ π/2 and 0 ≤ gk ≤ 1 for k = 1, 2.

Theorem 2.7. Let αk, gk ∈ R satisfy (2.13) and

(2.14) |α0 + α1| < π and gk−1(1 − gk) �= 1 for k = 1, 2,

and let K(an/1) be a continued fraction from 〈E1, E2〉 given by

(2.15) Ek := {a ∈ C; |a| − Re(a e−i(α0+α1)) ≤ 2gk−1(1 − gk) cosα0 cos α1}.

Then the even and odd parts of K(an/1) converge to finite values in V0, and
K(an/1) itself converges if and only if (1.5) holds.

Remarks 2.8.

1. 〈E1, E2〉 are the element sets corresponding to 〈V0, V1〉 in (2.12). If gk−1 = 0
or if −1 ∈ ∂Vk, then Ek reduces to the ray ei(α0+α1)(0,∞), possibly includ-
ing the end point a = 0. (Remember, 0 �∈ Ek if −1 ∈ Vk by definition.)

2. If E◦
k �= ∅, then ∂Ek is a parabola with axis along the ray

ei(α0+α1)[−gk−1(1 − gk) cosα0 cos α1,∞)

and focus at the origin.
3. Theorem 2.7 does not contain any essential news compared to the twin

version of Jones’ and Thron’s multiple parabola theorem in [5], [7, thm.
4.43, p. 106] which says that Theorem 2.7 holds under the additional
conditions that 0 < gk < 1 and |αk| < π/2 for k = 0 and k = 1.

Example 2.9. Let α0 = α1 = 0, g0 = 0 and g1 = 1 in (2.12) and (2.15). Then
0 ∈ ∂V0 and −1 ∈ ∂V1; i.e., −1 ∈ ∂†V1. For given positive sequences {εn} and {δn}
converging to 0, let

t2n−1 := εn − 1, t2n := δn and an := tn−1(1 + tn)

for all n. Then K(an/1) is a continued fraction from 〈E1, E2〉 given by (2.15). By
[12, formula (3.3.3), p.216] it follows that

Sn(0) − t0 = − t0
Rn

where Rn :=
n∑

k=0

Pk and Pk :=
k∏

j=1

1 + tj
−tj

.

In our situation,

1 + t2n−1

−t2n−1
· 1 + t2n

−t2n
= − εn

1 − εn
· 1 + δn

δn
∼ −εn

δn
(1 + εn + δn),

so S2n(0) may converge or diverge, depending on the asymptotic behavior of
{εn(1 + εn + δn)/δn}. A similar argument also shows that K(an/1) may also
diverge generally in this case.
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3. Some intermediate results

Let 〈V0, V1〉 be closed twin value sets for the continued fraction K(an/1). Then
it follows from (1.2) and (1.4) that

(3.1) ∆n := Sn(Vn) = Sn−1 ◦ sn(Vn) ⊆ Sn−1(Vn−1) = ∆n−1 ⊆ · · · ⊆ ∆0 = V0,

where V2n := V0 and V2n+1 := V1 for all n. Since all sn are (non-singular) linear
fractional transformations, so are also Sn (see (1.4)). Therefore, since Vn is circular,
also ∆n is a circular domain. The nestedness (3.1) implies that ∆n converges to
a limit set ∆. If ∆ just contains one point, the limit point case, then {S2n} and
{S2n+1} converge uniformly in V0 and V1 respectively to the limit point c. Since
both V0 and V1 contain more than one point in our cases, K(an/1) converges
generally to c in this case. If the limit set ∆ has positive or infinite radius, the limit
circle case, we need to investigate further. That ∆ is a circular set in this case was
proved by Thron [7, thm. 4.2B, p. 66].

In special cases classical convergence to c may be wanted. This may be possible
to prove by means of Theorem 1.4. This theorem is partly based on Theorem
3.1 below, which concerns restrained sequences introduced in [4]: we say that a
sequence {Fn} of linear fractional transformations is restrained if there exist two
sequences {un} and {vn} from Ĉ such that

(3.2) lim d(Fn(un), Fn(vn)) = 0 and lim inf d(un, vn) > 0.

If in addition limFn(un) = c, then we say that {Fn} converges generally to c. As
in (1.9) there exists an exceptional sequence {z†n} for {Fn} such that if (3.2) holds,
then (see [4])

(3.3) lim d(Fn(zn), Fn(un)) = 0 whenever lim inf d(zn, z†n) > 0.

Theorem 3.1. Let 〈V0, V1〉 be closed twin value sets for the continued fraction
K(an/1) where V0 or V1 contains more than one element. Let k ∈ {0, 1} be fixed,
and let {S2n+k} be restrained with exceptional sequence {z†n}. Then the limit points
for {z†n} are contained in (−1 − Vk+1) \ V ◦

k , and whenever lim inf d(un, z†n) > 0,
the set L of the limit points for S2n+k(un) is independent of {un} and L ⊆ V0 \
(−1 − V ◦

1 ).

Proof. Since either V0 or V1 contains at least two points, they both do since
a2n/(1 + V0) ⊆ V1 and a2n+1/(1 + V1) ⊆ V0. Since Vk contains more than one
point, there exists a sequence {vn} from Vk with lim inf d(vn, z†n) > 0. By (3.1) it
follows that S2n+k(Vk) ⊆ V0 for all n. It follows from (3.3) that L is independent
of {un} when lim inf d(un, z†n) > 0, and thus L ⊆ V0. Similarly, by Remark 1.2.2,
L ⊆ W0 = −1 − V c

1 , so L ⊆ V0 ∩ W0 = Y0 = V0 \ (−1 − V ◦
1 ).

Evidently, {z†n} can be chosen as z†n := S−1
2n+k(p) for any p �∈ L. By (3.3)

every exceptional sequence has the same asymptotic behavior. Let p �∈ V0. Then
z†n := S−1

2n+k(p) ∈ V c
k for all n. Similarly, for q ∈ W c

k given by Wk := (−1 − V c
k+1)

we can choose z†n := S−1
2n+k(q) for all n, and then z†n ∈ W c

k for all n. (See Remark
1.2.2.) Hence all the limit points of {z†n} are ⊆ W c

k ∩ V c
k = (−1 − Vk+1) \ V ◦

k . �

Since V0 is a circular domain, there exists a linear fractional transformation ϕ0

such that ϕ0(V0) = D. Hence the following result from [10] is useful to establish
convergence in the limit circle case.
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Theorem 3.2 ([10, thm. 3.8, 3.10]). Let {tn} be linear fractional transformations
with tn(D) ⊆ D, and let Tn := t1◦t2◦· · ·◦tn for all n ∈ N. If R := lim rad(Tn(D)) >
0, and there exists a set I ⊆ N such that

(3.4) lim sup
n∈I,n→∞

rad(tn(∂D)) < 1 and lim inf
n∈N\I,n→∞

rad(t−1
n−1(∂D)) > 1,

then |T−1
n (∞)| → 1 and

∑∞
n=1 |T ′

n(0)| < ∞.

Remarks 3.3.
1. Of course, if I is bounded, then the first condition in (3.4) is void, and if

N \ I is bounded, then the second one is void.
2. The conclusion

∑
|T ′

n(0)| < ∞ for the derivatives T ′
n implies that {Tn} is

restrained. (Proof: Tn can be written

Tn(z) = Cn + Rneiωn
z − Qn

1 − Qnz
for some |Qn| < 1 and ωn ∈ R

when Tn(D) = B(Cn, Rn), and thus T ′
n(z) = Rneiωn(1−|Qn|2)/(1−Qnz)2.

Hence T ′
n(z) → 0 for all z ∈ D.) Indeed,

∑
|T ′

n(z)| < ∞ for every z ∈ D.
Let M be the family of (non-singular) linear fractional transformations. For

given V ⊆ Ĉ and ε > 0 we introduced the subfamily

(3.5) Mε(V ) := {t ∈ M; t(V ) ⊆ V \ Bd(z, ε) for some z ∈ ∂V }
in [11]. This notation is useful to convert Theorem 3.2 to our situation:

Corollary 3.4. Let k ∈ {0, 1} be fixed, and let 〈V0, V1〉 be closed circular twin
value sets for the continued fraction K(an/1) where the limit circle case occurs.
Furthermore, let σn := s2n−1+k ◦ s2n+k, σ0 := σ1 and assume that

(3.6) σn ∈ Mε(Vk) for all n ∈ I and σ−1
n−1 ∈ Mε(V c

k ) for all n ∈ N \ I

for some I ⊆ N and ε > 0. Then {S2n+k} is restrained and its exceptional sequences
{z†n} have all their limit points ∈ ∂Vk. If also V0 is bounded, then {ζ2n+k} is an
exceptional sequence for {S2n+k} and

∑∞
n=1 |S′

2n+k(z)| < ∞ for every finite z ∈ V ◦
k .

Proof. Let ϕ ∈ M satisfy ϕ(Vk) = D. Then tn := ϕ ◦ σn ◦ϕ−1 maps D into D, and
Tn := t1 ◦ t2 ◦· · ·◦ tn = ϕ◦S

(k)
2n ◦ϕ−1 where S

(k)
2n := σ1 ◦σ2 ◦· · ·◦σn. Condition (3.6)

implies (3.4). Hence {Tn} is restrained with exceptional sequence {T−1
n (∞)} where

|T−1
n (∞)| → 1. Therefore {S(k)

2n } is restrained with exceptional sequence z†n :=
ϕ−1 ◦ T−1

n (∞) = (S(k)
2n )−1(ϕ−1(∞)). That {S2n+k} is restrained with exceptional

sequence {z†n} follows therefore since S2n = S
(0)
2n and S2n+1 = s1 ◦ S

(1)
2n for the

fixed s1 ∈ M. Since |T−1
n (∞)| → 1, i.e., dist(T−1

n (∞), ∂D) → 0, it follows that
d(ϕ−1 ◦ T−1

n (∞), ϕ−1(∂D)) → 0 where ϕ−1(∂D) = ∂Vk and ϕ−1 ◦ T−1
n (∞) = z†n.

That is, all the limit points of {z†n} are ∈ ∂Vk.
Let V0 be bounded. Then ∞ �∈ V0, so {ζ2n+k} is an exceptional sequence for

{S2n+k} since S2n+k(ζ2n+k) = ∞ whereas all the limit points for {S2n+k(un)}
are ∈ V0 when lim inf d(un, z†n) > 0 (Theorem 3.1). It remains to prove that∑

|S′
2n+k(z)| < ∞ for finite z ∈ V ◦

k . By Theorem 3.2 and Remark 3.3.2 we
know that

∑
|T ′

n(w)| < ∞ for every w ∈ D. First let k = 0 and choose ϕ(z) :=
(z − C0)/R0 where C0 and R0 are the center and radius of V0. Let z ∈ V ◦

0 be
arbitrarily chosen, and let w := ϕ(z). Then w ∈ D and S′

2n(z) = (ϕ−1)′(Tn(ϕ(z))) ·
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T ′
n(ϕ(z)) · ϕ′(z) = (ϕ−1)′(Tn(w)) · T ′

n(w) · 1
R0

= R0 · T ′
n(w) · 1

R0
= T ′

n(w). Hence∑
|S′

2n(z)| < ∞.
Next let k = 1 and set V̂0 := s1(V1). Then V̂0 = B(Ĉ0, R̂0) ⊆ V0 for some fixed

Ĉ0 ∈ C and R̂0 > 0. Furthermore, let ϕ1(z) := (z − Ĉ0)/R̂0 so that ϕ1(V̂0) = D

and tn := ϕ1 ◦ s1 ◦ s2n ◦ s2n+1 ◦ s−1
1 ◦ ϕ−1

1 maps D into D. Let a finite z ∈ V ◦
1 be

arbitrarily chosen, and let w := ϕ1 ◦ s1(z). Then w ∈ D and

S′
2n+1(z) = (ϕ−1

1 )′(Tn ◦ ϕ1 ◦ s1(z)) · T ′
n(ϕ1 ◦ s1(z)) · ϕ′

1(s1(z)) · s′1(z)

= R̂0 · T ′
n(w) · 1

R̂0

· −a1

(1 + z)2
=

−a1

(1 + z)2
T ′

n(w)

where z �= −1 since −1 �∈ V1 when V0 is bounded. Hence
∑

|S′
2n+1(z)| < ∞. �

It follows from (1.6) that Sn can be written

(3.7) Sn(z) =

⎧⎨⎩cn−1 −
ζn(cn − cn−1)

z − ζn
if ζn �= ∞,

cn − (cn−2 − cn)z if ζn = ∞.

Therefore

(3.8) S′
n(z) =

⎧⎨⎩
ζn(cn − cn−1)

(z − ζn)2
= −Sn(z) − cn−1

z − ζn
if ζn �= ∞,

cn − cn−2 if ζn = ∞.

Under the conditions of Corollary 3.4 it follows therefore that for arbitrary ε > 0,∑
′|S2n+k(zn) − c2n+k−1| < ∞

whenever ε ≤ dist(zn, Zk) ≤ 1
ε for all n and ∞ �∈ Zk.

(3.9)

(For the notation
∑′ and Zk, see the list of notation in section 1.) This leads to

the following result, where Wk := −1 − V c
k+1 and ∂∗Vk := ∂Vk ∩ (−1 − Vk+1) as

usual.

Theorem 3.5. Let k ∈ {0, 1} be fixed. Let 〈V0, V1〉 be closed circular twin value
sets for the continued fraction K(an/1) where V0 is bounded, the limit circle case
occurs and (3.6) holds for our k for some I ⊆ N and ε > 0. Then Zk ⊆ ∂∗Vk,
−k �∈ Zk, 0 �∈ Z0 and Z1 and Zk are bounded,

∑′ |c2n − c2n−1| < ∞, and the
following statements are true.

A. Let ε > 0. If (k − 1) �∈ Zk or if for each n from some n0 on, either
dist(a2n+k−1, Zk) ≥ ε or dist(−1−a2n+k, Zk) ≥ ε, then

∑′ |cn−cn−1| < ∞.
B. If also the limit circle case occurs for S2n(W0) and

(3.10) σn ∈ Mε(Wk) for n ∈ I and σ−1
n−1 ∈ Mε(W c

k ) for n ∈ N \ I

for some I ⊆ N and ε > 0 for σn as in Corollary 3.4, then Zk ⊆ ∂†Vk.

Proof. Under our conditions, {S2n+k} is restrained with exceptional sequence
{ζ2n+k}, Zk ⊆ (−1 − Vk+1) ∩ ∂Vk = ∂∗Vk and Zk+1 ⊆ (−1 − Vk) \ V ◦

k+1 (The-
orem 3.1 and Corollary 3.4). Now, V0 is bounded, so −1 �∈ V1, and thus 0 �∈ Z0 and
−k �∈ Zk, and Zk and Z1 are bounded. Since S2n(0) = c2n and S2n+1(−1) = c2n−1,
it follows therefore from (3.9) that

∑′ |c2n − c2n−1| < ∞.
A. It suffices to prove that either

∑′ |c2n−2 − c2n−1| < ∞ or
∑′ |c2n+m −

c2n+m−2| < ∞ for an m ∈ {0, 1}. First let (k − 1) �∈ Zk. If k = 0, this means that
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and
∑′ |S2n+1(0) − c2n| < ∞. Next let I := {n ∈ N; dist(a2n+k−1, Zk) ≥ ε}. Then∑′

n∈I |S2n+k−2(a2n+k−1)− c2n+k−3| < ∞ where S2n+k−2(a2n+k−1) = c2n+k−1 and∑′
n�∈I |S2n+k(−1 − a2n+k) − c2n+k−1| < ∞ where S2n+k(−1 − a2n+k) = c2n+k−3,

which means that
∑′ |c2n+k+1 − c2n+k−1| < ∞.

B. 〈W0, W1〉 are twin value sets for K(an/1) (Remark 1.2.2). They satisfy the
conditions in Corollary 3.4, so the exceptional sequences for {S2n+k} have all their
limit points in ∂Wk. Hence Zk ⊆ ∂Vk ∩ ∂Wk = ∂Vk ∩ (−1 − ∂Vk+1) = ∂†Vk. �

4. Proofs

Inspired by (3.5) we define

Mε(V, W ) := {t ∈ M; t(V ) ⊆ W \ Bd(z, ε) for some z ∈ ∂W},(4.1)

E(V ) := {〈A, B〉 ⊆ C
2;

∃ ε > 0 s.t. s1 ◦ s2 ∈ Mε(V ) for all 〈a1, a2〉 ∈ 〈A, B〉},(4.2)

E(V, W ) := {A ⊆ C; ∃ ε > 0 s.t. s ∈ Mε(V, W ) for all a ∈ A}.(4.3)

Proof of Theorem 1.4. Since K(an/1) converges generally to c whereas q �= c, the
sequence {Sn} is restrained with exceptional sequence z†n := S−1

n (q). Part A fol-
lows from Theorem 3.1. The result in B follows from (1.9) since S2n+k(−1) =
c2n+k−2 and S2n+k(∞) = c2n+k−1. Similarly, part C follows from (1.9) since
S2n+k−2(a2n+k−1) = c2n+k−1 and S2n+k+2(−1 − a2n+k+2) = c2n+k−1.

To prove part D we observe that if V0 is bounded, then c �= ∞ and ∞ �∈ Z̃1 by
part A. Hence {ζn} is exceptional and S2n+1(∞) = c2n → c by part B. Finally, if
−1 �∈ V0 \ (−1− V ◦

1 ), i.e., 0 �∈ (−1− V0) \V ◦
1 , then 0 �∈ Z̃1, and part E follows from

part B. (The same holds true if 0 �∈ V0, but 0 �∈ V0 ⇒ ∞ �∈ V1 ⇒ −1 �∈ V0.) �

Lemma 4.1. For given closed twin value sets 〈V0, V1〉, let Uk := −1 − V c
k+1 for

k = 0, 1, and let k ∈ {0, 1} be a fixed number. Then s(Uk) ⊆ Uk+1 if and only if
s(Vk) ⊆ Vk+1 and s(Uk) = Uk+1 if and only if s(Vk) = Vk+1. Similarly, if A ⊆ C

is a closed set with 0,∞ �∈ A, then A ∈ E(Uk, Uk+1) if and only if A ∈ E(Vk, Vk+1).

Proof. Let a/(1+Vk) ⊆ Vk+1. Since Vk is closed, the set V c
k is open and non-empty,

and both Vk, Vk+1, Uk and Uk+1 contain finite elements. Therefore

a

1 + Uk
= − a

V c
k+1

= −
(

a

Vk+1

)c

⊆ (−1 − Vk)c = Uk+1.

This actually proves the first two equivalences since U and V can be interchanged in
this inclusion. Let a/(1+Vk) ⊆ Vk+1\Bd(z, ε) for some finite z ∈ ∂Vk+1 = −1−∂Uk

and ε > 0. That is, a/Uk+1 ⊇ −(Vk+1 \ Bd(z, ε))c = −(−1 − Uk) ∪ Bd(z, ε) =
1 + Uk ∪Bd(z∗, ε) where z∗ := −1− z ∈ ∂Uk. That is, s−1(Uk+1) ⊇ Uk ∪Bd(z∗, ε),
so s(Uk ∪ Bd(z∗, ε)) ⊆ Uk+1. Let D := Bd(z∗, ε) \ Uk so that Uk ∩ D = ∅ and
Uk ∪ D = Uk ∪ Bd(z∗, ε). Then

a

1 + Uk ∪ Bd(z∗, ε)
=

a

1 + Uk
∪ a

1 + D
⊆ Uk+1; i.e.,

a

1 + Uk
⊆ Uk+1 \

a

1 + D

where a/(1 + z∗) ∈ Uk+1. Therefore a/(1 + Uk) ⊆ Uk+1 \ Bd( a
1+z∗ , ε∗) where

ε∗ := dist( a
1+z∗ , a

1+∂Bd(z,ε) ). Since 0,∞ �∈ A, the quantity ε∗ has a positive lower
bound for a ∈ A. Therefore A ∈ E(Uk, Uk+1). This proves the last equivalence. �
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Lemma 4.2. Let V0, V1 be closed circular domains, and let a1, a2 ∈ C\{0} satisfy
ak/(1 + Vk) ⊆ Vk−1 for k = 1, 2. Then σ := s1 ◦ s2 is an elliptic transformation if
and only if sk(Vk) = Vk−1 for k = 1, 2 and σ has exactly two distinct fixed points
w0, w1 �∈ ∂V0.

Proof. Let σ be elliptic. Since σ(V0) ⊆ V0, it follows from [11, thm. 1.4] that
σ(V0) = V0. Since V0 = s1 ◦ s2(V0) ⊆ s1(V1) ⊆ V0, this means that s1(V1) = V0 and
s2(V0) = V1. It is clear that σ has two distinct fixed points w0, w1 and that ∂V0 is
a fixed circle (or fixed line) for σ. Hence ∂V0 separates the two fixed points.

Conversely, assume that sk(Vk) = Vk−1 for k = 1, 2 and that σ has two distinct
fixed points �∈ ∂V0. Then σ(∂V0) = ∂V0, which means that σ is either hyperbolic,
parabolic, elliptic or the identity transformation. Since σ has exactly two distinct
fixed points, the parabolic case and the identity case are ruled out. Since none of
the fixed points lie on ∂V0, the hyperbolic case is ruled out, so σ is elliptic. �

Lemma 4.3 (The disk – disk case). Let Vk := B(Ck, Rk) for k = 0, 1, where Ck ∈ C

and Rk > 0 satisfy (2.1). Then 〈E1, E2〉 given by (2.4) are the corresponding
element sets. Let k ∈ {1, 2} be fixed. Then Ek �= ∅ if and only if (2.2) holds. If
(2.2) holds with strict inequality, then E◦

k �= ∅. If (2.2) holds with equality, then
Ek = {ãk} is given by (2.3) and ãk �= 0. If E◦

k �= ∅, then 〈Ek, Ek+1〉 ∈ E(Vk−1).

Proof. For fixed k ∈ {1, 2} and a �= 0 we have

(4.4)
a

1 + Vk
= B

(
a(1 + Ck)

|1 + Ck|2 − R2
k

,
|a|Rk

|1 + Ck|2 − R2
k

)
=: B(Ĉk−1, R̂k−1)

and a/(1 + Vk) ⊆ Vk−1 if and only if |Ĉk−1 − Ck−1| + R̂k−1 ≤ Rk−1, that is, if
and only if a ∈ Ek, where Ek is given by (2.4). Since Rk < |1 + Ck|, we see from
(2.4) that Ek �= ∅ if and only if ãk ∈ Ek, which proves that (2.2) is necessary
and sufficient. It also proves that ãk is the only point in Ek if and only if (2.2)
holds with equality, and that E◦

k �= ∅ otherwise. This means that if E◦
k �= ∅, then

s ∈ Mεa
(Vk, Vk−1) for some εa > 0 for every a ∈ Ek. Since Ek is compact in

C (−1 �∈ Vk when Vk−1 is bounded), this means that Ek ∈ E(Vk, Vk−1). Finally,
since sk ◦ sk+1(Vk+1) ⊆ sk(Vk) for all 〈ak, ak+1〉 ∈ 〈Ek, Ek+1〉, it follows that
〈Ek, Ek+1〉 ∈ E(Vk−1). �

Proof of Theorem 2.1. If |Ck−1|Rk = |1 + Ck|Rk−1 for k = 1 and k = 2, then
K(an/1) with all a2n−1 = ã1 and a2n = ã2 is the only continued fraction from
〈E1, E2〉. It converges if and only if s̃1 ◦ s̃2 is non–elliptic. Let (2.2) hold with strict
inequality for at least one k ∈ {1, 2}. Without loss of generality we assume that
E◦

1 �= ∅. (See Remark 1.2.1.)
Assume first that the limit point case occurs. Then K(an/1) converges generally

to a value c ∈ V0. It follows by Lemma 1.4D that c2n → c. Since also V1 is bounded,
we have −1 �∈ V0, so also c2n+1 → c by Lemma 1.4E.

Assume next that the limit circle case occurs. By Lemma 4.3 we know that
lim sup rad(s2n−1 ◦ s2n(V0)) < rad(V0), and so Z0 ⊆ ∂∗V0 by Theorem 3.5. Now,
−1 �∈ V0 implies that −1 �∈ ∂∗V0. Hence

∑′ |cn − cn−1| < ∞ by Theorem 3.5A, and
thus K(an/1) converges. �

Lemma 4.4 (The disk – half plane case). Let V0 := B(C0, R0) and V1 :=
H(h cos α, α) where C0 ∈ C and R0, h, α ∈ R satisfy (2.5). Then 〈E1, E2〉 given by
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(2.7) are the corresponding element sets, and Ẽk,δ given by (2.8) satisfies Ẽk,δ ∈
E(Vk, Vk−1) for k = 1, 2 and 0 < δ < |a∗

1|.

Proof. For a �= 0 we have

(4.5)
a

1 + V1
= B

(
a e−iα

2(1 + h) cosα
,

|a|
2(1 + h) cosα

)
which is ⊆ V0 if and only if | a e−iα

2(1+h) cos α − C0| + |a|
2(1+h) cos α ≤ R0, i.e., if and only

if a ∈ E1. Since 0 ∈ V0 and 0/(1 + V1) = {0}, we also have 0 ∈ E1. Similarly, for
a �= 0,
(4.6)

a

1 + V0
=

{
B

(
a(1+C0)

|1+C0|2−R2
0
, |a|R0

|1+C0|2−R2
0

)
=: B(Ĉ1, R̂1) if |1 + C0| > R0,

H
(
|a|/(2R0), arg(a(1 + C0))

)
if |1 + C0| = R0,

and thus a/(1 + V0) ⊆ V1 if and only if

Re
(

a(1 + C0)
|1 + C0|2 − R2

0

e−iα

)
− |a|R0

|1 + C0|2 − R2
0

≥ h cosα if |1 + C0| > R0,

arg
(
a(1 + C0)

)
= α and

|a|
2R0

≥ h cosα if |1 + C0| = R0,

(4.7)

i.e., if and only if a ∈ E2. If −1 ∈ V0, i.e., |1+C0| = R0, then 0 �∈ E2 by definition.
Hence 〈E1, E2〉 are the element sets corresponding to 〈V0, V1〉.

By (4.5) it follows that a/(1 + V1) = V0 if and only if R0 = |C0| and C0 =
a e−iα/[2(1 + h) cosα], i.e., a = a∗

1. Since −1 �∈ V1, the set E1 is compact, so this
shows that E1 ∈ E(V1, V0) if R0 > |C0|. Let R0 = |C0|. Since Ẽ1,δ ⊆ E1 is a
compact set not containing a∗

1, Ẽ1,δ ∈ E(V1, V0).
Next we study Ẽ2,δ. First let |1+C0| = R0. By (4.6) it follows that a/(1+V0) =

V1 for a �= 0 if and only if h > 0 and q := a
2R0

1+C0
|1+C0| = h eiα cos α, i.e., a = a∗

2.

In this case a∗
2 �= 0 and E2 is the ray E2 = a∗

2[1,∞) and Ẽ2,δ = a∗
2[1 + δ/|a∗

2|, ∞).
Hence Ẽ2,δ is a closed set in C with 0 �∈ Ẽ2,δ, and even if a2nm

→ ∞ as m → ∞,
the set a2nm

/(1 + V0) will not approach V1. (Indeed, it approaches the point
set {∞} since V0 is bounded.) Therefore Ẽ2,δ ∈ E(V0, V1) if h > 0. If h < 0,
then dist(q − h eiα cos α) > |h| cos α > 0, and E2 ∈ E(V0, V1). If h = 0, then
Ẽ2,δ = [δ,∞)eiγ with γ := α + arg(1 + C0), and a/(1 + V0) is the half plane
H(|a|/2R0, arg(a(1 + C0))) = H(|a|/2R0, α) for a ∈ E2. Hence also now Ẽ2,δ ∈
E(V0, V1).

Next let |1 + C0| > R0. Then it follows from (4.6) that a/(1 + V0) = B(Ĉ1, R̂1)
is a disk not containing the origin for a �= 0. If a = 0, then a/(1 + V0) = {0} since
−1 �∈ V0. Hence, there is no possibility of B(Ĉ1, R̂1) → V1 unless R̂1 → ∞; i.e.,
|a| → ∞, but then a/(1 + V0) → {∞} since V0 is bounded. Hence E2 ∈ E(V0, V1)
in this case. �

Proof of Theorem 2.3. Let K(an/1) be a continued fraction from 〈E1, E2〉. If
rad(S2n(V0)) → 0 or rad(S2n(W0)) → 0 or diam(S2n(Y0)) → 0, then K(an/1)
clearly converges generally. Assume in the proof of parts A–C below that
diam(S2n(Y0)) → d̃ > 0, and thus rad(S2n(V0)) → R > 0 and rad(S2n(W0)) →
R∗ > 0.
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A. Let K(an/1) be from 〈E1, Ẽ2,δ〉. Then s2n ◦ s2n+1(V1) ⊆ s2n(V0) where
a2n ∈ Ẽ2,δ ∈ E(V0, V1) by Lemma 4.4, so 〈Ẽ2,δ, E1〉 ∈ E(V1). Therefore K(an/1)
converges in the classical sense if 0 �∈ Z1 (Theorem 3.5A with k = 1).

Let 0 ∈ Z1. Since by Theorem 3.5, Z1 ⊆ ∂∗V1, this means that 0 ∈ ∂V1, and
−1 ∈ V0, which means that −1 ∈ ∂V0 by (2.5), so indeed, 0 ∈ ∂†V1. Then h = 0,
and thus a∗

2 = 0, and R0 = |1+C0| and Ẽ2,δ = eiγ [δ,∞) where γ := α+arg(1+C0).
This means that dist(Ẽ2,δ, ∂∗V1) > 0 unless Ẽ2,δ ⊆ ∂V1. Now, Re(C0) ≥ −1

2 when
−1 ∈ ∂V0 since 0 ∈ V0 by (2.5) and V0 is a disk. Therefore γ �= α ± π

2 , and
Ẽ2,δ �⊆ ∂V1. Hence K(an/1) still converges by Theorem 3.5A.

B. Let K(an/1) be from 〈Ẽ1,δ, E2〉 and let 0 �∈ ∂†V1. If Ẽ2,δ = E2, then the
situation is covered by part B, so let R0 = |1 + C0| and h ≥ 0. That is, −1 ∈ ∂V0

and 0 �∈ V ◦
1 , and so, 0 �∈ V1 under our conditions. Now, a2n−1 ∈ Ẽ1,δ ∈ E(V1, V0)

by Lemma 4.4, so 〈Ẽ1,δ, E2〉 ∈ E(V0). The result follows therefore from Theorem
3.5A since 0 �∈ V1 implies that −1 �∈ ∂∗V0, and thus −1 �∈ Z0.

C. Let K(an/1) be from 〈Ẽ1,δ, E2〉. By Lemma 4.4, 〈Ẽ1,δ, E2〉 ∈ E(V0). Hence
Z0 ⊆ ∂∗V0 by Theorem 3.5. The convergence follows therefore from Theorem 3.5A.

D. That c2n → c follows from Theorem 1.4D. We know that Zk ⊆ (−1−Vk+1)\V ◦
k

by Theorem 1.4A. Therefore 0 �∈ Z1 if 0 ∈ V ◦
1 or −1 �∈ V0, which in our situation

holds if −1 �∈ ∂V0, and cn → c by Theorem 1.4E.
The conditions on {an} imply that dist(a2n−1, Z0) ≥ ε from some n on (Theorem

3.5), and thus c2n−1 → c by Theorem 1.4C. �

Lemma 4.5 (The disk – complement of disk case). Let V0 := B(C0, R0) and
V1 := B(C1, R1)c where C0, C1 ∈ C and R0, R1 > 0 satisfy (2.9). Let Ek and Êk,δ

be given as in Theorem 2.5. Then 〈E1, E2〉 are the element sets corresponding to
〈V0, V1〉, and 〈Ê1,δ, E2〉 ∈ E(V0) and 〈Ê2,δ, E1〉 ∈ E(V1).

Proof. For a �= 0 the set a/(1 + V1) is a circular disk B(Ĉ0, R̂0) where

(4.8) Ĉ0 =
a(1 + C1)

|1 + C1|2 − R2
1

, R̂0 =
|a|R1

R2
1 − |1 + C1|2

.

It is ⊆ V0 if and only if |Ĉ0 − C0| + R̂0 ≤ R0, i.e., if and only if a ∈ E1. It is equal
to V0 if and only if Ĉ0 = C0 and R̂0 = R0, i.e., if and only if either

C1 �= −1, a = ã1 and |C0|R1 = R0|1 + C1|
or C1 = −1, C0 = 0 and |a| = R0R1.

(4.9)

Since Ê1,δ is a closed, bounded set in C with a/(1 + V1) �= V0 for all a ∈ Ê1,δ, we
have Ê1,δ ∈ E(V1, V0). Since s1◦s2(V0) ⊆ s1(V1) this proves that 〈Ê1,δ, E2〉 ∈ E(V0).

Let |1+C0| < R0. Then a/(1+V0) is the exterior of a disk. Indeed, a/(1+V ◦
0 ) =

B(Ĉ1, R̂1)c where

(4.10) Ĉ1 =
a(1 + C0)

|1 + C0|2 − R2
0

, R̂1 =
|a|R0

R2
0 − |1 + C0|2

.

It is ⊆ V1 if and only if |Ĉ1 − C1| + R1 ≤ R̂1, i.e., if and only if a ∈ E2. It is equal
to V ◦

1 if and only if Ĉ1 = C1 and R̂1 = R1, i.e., if and only if either

−1 ∈ V ◦
0 , C0 �= −1, a = ã2 and |C1|R0 = R1|1 + C0|

or C0 = −1, C1 = 0 and |a| = R0R1.
(4.11)
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These cases are excluded for a ∈ Ê2,δ. From (2.10) we see that 0 �∈ E2 when
|1 + C0| < R0. We need to check whether a2nk

/(1 + V0) → V1 is possible for
a2nk

∈ E2 if a2nk
→ ∞. But this is no problem since V0 is bounded, and thus

lima→∞ a/(1+V0) = {∞}. Therefore Ẽ2,δ ∈ E(V0, V1), and thus 〈Ê2,δ, E1〉 ∈ E(V1).
Next, let |1 + C0| = R0. Then for a �= 0, a/(1 + V0) is the half plane given by

(4.6). Hence 〈E2, E1〉 ∈ E(V1) and a/(1 + V0) ⊆ V1 if and only if

Re
(

C1
1 + C0

|1 + C0|
e−iθ

)
+ R1 ≤ |a|

2R0
where θ := arg a,

which gives the expression for E2 in this case. (0 �∈ E2 since −1 ∈ V0.)
Finally, let |1+C0| > R0. Then a/(1+V0) = B(Ĉ1,−R̂1) for a �= 0, where Ĉ1 and

R̂1 are given by (4.10). Therefore a/(1+V0) ⊆ V1 if and only if |Ĉ1−C1| ≥ R1+|R̂1|,
i.e., if and only if a ∈ E2. Moreover, 〈E2, E1〉 ∈ E(V1). �

Proof of Theorem 2.5. A. The expressions for E1 and E2 follow from Lemma 4.5.
We need to check that E◦

k �= ∅ for k = 1, 2. This clearly holds for E1 since |C0| < R0

and |1 + C1| < R1, and thus 0 ∈ E◦
1 . It is also clear that E◦

2 �= ∅ if C0 = −1 or
if R0 = |1 + C0|. Let R0 < |1 + C0| and C1 �= 0. Then ã2 �= 0 and −tã2 ∈ E◦

2

for all t > 0 sufficiently large. If R0 < |1 + C0| and C1 = 0, then ã2 = 0 and
E2 = {a; |a| ≥ R1(|1 + C0| + R0)}, so again E◦

2 �= ∅. If R0 > |1 + C0| > 0 and
C1 �= 0, then tã2 ∈ E◦

2 for all t > 0 sufficiently large, and thus E◦
2 �= ∅. Finally, if

R0 > |1+C0| and C1 = 0, then ã2 = 0 and all a with |a| ≥ R2
0 −|1+C0|2 are ∈ E2.

Let K(an/1) be a continued fraction from 〈E1, E2〉. If rad(S2n(V0)) → 0 or
rad(S2n(W0)) → 0 or diam(S2n(Y0)) → 0, then K(an/1) clearly converges generally.
Assume in the proof of parts B and C below that diam(S2n(Y0)) → d̃ > 0, and thus
rad(S2n(V0)) → R > 0 and rad(S2n(W0)) → R∗ > 0.

B. We first observe that W0 = B(−1 − C1, R1) and W1 = B(−1 − C0, R0)c in
this case. By Lemma 4.1 the element sets E1 and E2 do not change if we replace
〈V0, V1〉 by 〈W0, W1〉 (although their representation (2.10) changes), and neither do
the conditions in (2.11). Indeed, Ê1,δ and Ê2,δ do not change either, since

ãk = Ck−1(1 + Ck)(1 − R2
k/|1 + Ck|2) = (−1 − Ck)(−Ck−1)(1 − R2

k−1/|Ck−1|2)

when |Ck−1|Rk = Rk−1|1 + Ck| > 0. Therefore Ê1,δ ∈ E(W1, W0) ∩ E(V1, V0) by
Lemma 4.5.

There is one condition that is changed, though, and that is the condition −1 �∈
V ◦

0 , which is equivalent to 0 ∈ W1. This means that if −1 �∈ V ◦
0 , then E2 ∈

E(V0, V1), whereas, by (4.11), E2 �∈ E(W0, W1) if also −1 ∈ W ◦
0 and |C1|R0 =

R1|1 + C0| ≥ 0. However, this case cannot occur since

−1 �∈ V ◦
0 ⇔ |1 + C0| ≥ R0 and − 1 ∈ W ◦

0 ⇔ |C1| < R1,

which give |C1|R0 < R1|1+C0|. Therefore, also now Ê2,δ ∈ E(W0, W1)∩E(V0, V1) by
Lemma 4.5. This means that Zk ∈ ∂†Vk by Theorem 3.5B. Since ∂†V0 = −1−∂†V1,
the convergence follows from Theorem 3.5A, both if K(an/1) is from 〈Ê1,δ, E2〉 or
from 〈E1, Ê2,δ〉.

C. By the proof of part B, Z0 ⊆ ∂†V0 when K(an/1) is from 〈Ê1,δ, E2〉, and
Z1 ⊆ ∂†V1 when K(an/1) is from 〈E1, Ê2,δ〉. The result follows therefore from
Theorem 3.5A.
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D: Let K(an/1) from 〈E1, E2〉 converge generally to c. Then c2n → c and Z̃k =
Zk for k = 0, 1 by Theorem 1.4D. Therefore Z0 ⊆ V c

0 ∩ (−1− V1) (Theorem 1.4A).
It follows therefore from Theorem 1.4E and C with k = 0 that also c2n−1 → c. �

Proof of Theorem 2.7. Let k ∈ {1, 2} be fixed. First let −1 �∈ ∂Vk. Then gk < 1,
|αk| < π/2 and

a/(1 + Vk) = B(C̃k, R̃k), C̃k :=
a e−iαk

2(1 − gk) cos αk
, R̃k :=

|a|
2(1 − gk) cosαk

for a �= 0. This set is contained in Vk−1 if and only if Re(C̃ke−iαk−1) − R̃k ≥
−gk−1 cos αk−1, which proves the expression for Ek in this case. Next let −1 ∈ ∂Vk.
Then 1/(1 + Vk) = H(0,−αk). Hence a/(1 + Vk) ⊆ Vk−1 for a �= 0 if and only if
arg(a) = αk−1 + αk. Since either gk = 1 or |αk| = π/2 when −1 ∈ ∂Vk, the
expression (2.15) for Ek is still valid. Therefore 〈E1, E2〉 given by (2.15) are the
element sets corresponding to 〈V0, V1〉.

If 0,−1 �∈ Vk for both k = 0 and k = 1, then the convergence follows from the
twin version of the multiple parabola theorem proved in [5]. (See Remark 2.8.3.)
Otherwise, by (2.14), there exist g̃0, g̃1, α̃0 and α̃1 such that

|α̃0| < π
2 , |α̃1| < π

2 and α̃0 + α̃1 = α0 + α1,

0 < g̃0 < 1, 0 < g̃1 < 1 and g̃k(1 − g̃k−1) ≥ gk(1 − gk−1) for k = 1, 2.

Let Ẽ1 and Ẽ2 be given by (2.15) with g0, g1, α0 and α1 replaced by g̃0, g̃1, α̃0 and
α̃1. Then E1 ⊆ Ẽ1 and E2 ⊆ Ẽ2, and the convergence follows again from the twin
version of the multiple parabola theorem. �

Proof of Theorem 1.3. Since |Ck|Rk+1 �= Rk|1 + Ck+1| for k = 0 or k = 1, we have
Êk+1,δ = Ek+1 in (2.11) for this k, and K(an/1) converges generally by Theorem
2.5B. �

Proof of Theorem 1.1. A. Since E◦
2 = ∅ if and only if E2 = {ã2} in this case, which

happens if and only if |C1|R0 = |1 + C0|R1, it follows from Theorem 2.1 that
K(an/1) converges.

B. By (2.7) we always have −1 �∈ V0 when E◦
2 �= ∅. Hence Ẽ2,δ = E2, and

K(an/1) converges generally by Theorem 2.3B. Theorem 1.4D shows therefore that
its even part converges, and Theorem 1.4E shows that its odd part converges.

C. It follows from Theorem 1.3 that K(an/1) converges generally in this case.
Therefore its even part converges by Theorem 1.4D. The convergence of K(an/1)
follows from Theorem 1.4E.

D. (2.14) holds under our conditions, and the result follows from Theorem 2.7.
�
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