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CLASSES OF TIME-DEPENDENT MEASURES,
NON-HOMOGENEOUS MARKOV PROCESSES,

AND FEYNMAN-KAC PROPAGATORS

ARCHIL GULISASHVILI

Abstract. We study the inheritance of properties of free backward propaga-
tors associated with transition probability functions by backward Feynman-
Kac propagators corresponding to functions and time-dependent measures
from non-autonomous Kato classes. The inheritance of the following proper-
ties is discussed: the strong continuity of backward propagators on the space
Lr, the (Lr − Lq)-smoothing property of backward propagators, and various
generalizations of the Feller property. We also prove that a propagator on
a Banach space is strongly continuous if and only if it is separately strongly
continuous and locally uniformly bounded.

1. Introduction

In this paper we study the behavior of evolution families (propagators). Ex-
amples of such families are solution operators corresponding to initial and final
value problems for second order parabolic partial differential equations and also in-
tegral operators associated with non-homogeneous transition probability functions.
The main objects of our interest in the present paper are forward and backward
Feynman-Kac propagators associated with forward and backward free propagators.
We formulate and prove our results for backward propagators. However, all the
results obtained in the present paper have their counterparts in the case of forward
propagators. This is explained in Section 10. We choose backward free and back-
ward Feynman-Kac propagators in this paper because of their links with transition
probability functions. Note that in the forward case one uses backward transition
probability functions (see Section 10).

The free backward propagator Y = Y (τ, t) is given by

(1) Y (τ, t)f(x) =
∫

E

f(y)P (x, τ ; t, dy) = Eτ,x [f(Xt)] , 0 ≤ τ < t ≤ T,
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and the backward Feynman-Kac propagators YV and Yµ are defined by

(2) YV (τ, t)f(x) = Eτ,x

[
f(Xt) exp{−

∫ t

τ

V (s, Xs)ds}
]

, 0 ≤ τ < t ≤ T,

and

(3) Yµ(τ, t)f(x) = Eτ,x [f(Xt) exp{−Aµ(t, τ )}] , 0 ≤ τ < t ≤ T.

In formula (1), P is a transition probability function on a locally compact second
countable Hausdorff topological space E equipped with the Borel σ-algebra E and
a reference measure m. It is assumed that 0 < m(A) < ∞ for any compact
subset A of E with non-empty interior. We will write dx instead of m(dx). It
is known that the space E is σ-compact and metrizable (see [26]), and a metric
ρ : E×E → [0,∞) generating the topology of the space E will be fixed. In formulae
(2) and (3), V is a Borel function on [0, T ]×E and µ = {µ(t) : 0 ≤ t ≤ T} is a family
of signed Borel measures of locally finite variation. We call such families time-
dependent measures. In formulae (1)–(3), X = (Xt,Fτ

t , Pτ,x) is an Fτ
t -progressively

measurable non-homogeneous Markov process with state space (E, E) and with
P as its transition function. By M will be denoted the class of all transition
probability functions P for which such a process exists, and we will always choose
a progressively measurable process Xt to represent P . The restrictions on f , V ,
and µ in formulae (1)–(3) will be specified below. The symbol Aµ in formula (3)
stands for the additive functional of the process Xt that extends the functional
AV (τ, t) =

∫ t

τ
V (s, Xs)ds from functions on the space [0, T ]×E to time-dependent

measures (see Section 4). We refer the reader to [6, 8, 9, 10, 15, 28, 31, 35, 41]
for more information on transition probability functions, non-homogeneous Markov
processes, and progressive measurability. Kolmogorov’s paper [27] was an important
early work on non-homogeneous Markov processes.

Free backward propagators often arise as solution operators associated with final
value problems of the following form:{

∂u
∂τ + L(τ )u = 0, 0 < τ < t ≤ T,
u(t) = f,

where the generators L(τ ) depend on time. The backward Feynman-Kac propagator
YV corresponds to the perturbed final value problem,{

∂u
∂τ + L(τ )u − V (τ )u = 0, 0 < τ < t ≤ T,
u(t) = f,

while the backward Feynman-Kac propagator Yµ is associated with the problem

(4)
{

∂u
∂τ + L(τ )u − µ(τ )u = 0, 0 < τ < t ≤ T,
u(t) = f.

Similarly, free forward propagators often arise as solution operators associated with
initial value problems of the following form:{

∂u
∂t − L(t)u = 0, 0 ≤ τ < t < T,
u(τ ) = f.

The forward Feynman-Kac propagator UV corresponds to the perturbed initial
value problem, {

∂u
∂t − L(t)u + V (t)u = 0, 0 ≤ τ < t < T,
u(τ ) = f,
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while the forward Feynman-Kac propagator Uµ is associated with the problem

(5)
{

∂u
∂t − L(t)u + µ(t)u = 0, 0 ≤ τ < t < T,
u(τ ) = f.

The equations in (4) and (5) are understood in the distributional sense (see Section
10 for the definition of free propagators and Feynman-Kac propagators).

Throughout the present paper, we assume that V and µ belong to the non-
autonomous Kato classes P∗

f and P∗
m of functions and measures, respectively (see

Definition 3.1). In the case of the Gaussian transition probability density, these
classes were studied in [16, 17, 18, 21]. The classes P∗

f and P∗
m are generalizations

of a celebrated Kato class Kn introduced by Aizenman and Simon in [1, 37]. The
definition of Kn is based on a condition used by Kato in [25]. Aizenman and
Simon developed the theory of Schrödinger semigroups with Kato class potentials
(see [1, 37]). The Feynman-Kac propagators YV and Yµ with V and µ in the
classes P∗

f and P∗
m are, in a sense, two parameter generalizations of Schrödinger

semigroups with Kato class potentials. However, even in the case where P is the
Gaussian transition probability function, the classes P∗

f and P∗
m are not completely

analogous to the Kato class. For instance, it was shown in [21] that there exist
V ∈ P∗

f and µ ∈ P∗
m such that the backward Feynman-Kac propagators YV and

Yµ are not bounded on the space L1. On the other hand, a Schrödinger semigroup
with a Kato class potential is always bounded on L1. More information on the
Kato classes of functions and measures and Schrödinger semigroups can be found
in [1, 2, 3, 4, 5, 6, 7, 24, 37, 39, 40, 45]. The non-autonomous Kato classes were
studied in [16, 17, 18, 19, 20, 21, 22, 30, 31, 34, 36, 38, 42, 43, 44]. The classes P∗

f

and P∗
m considered in [16, 17, 18, 19, 20, 21, 22] and in the present paper are wider

than most of the non-autonomous Kato classes studied before.
We now give an overview of the results obtained in the present paper. In Section

2 we prove that the strong continuity of a propagator is equivalent to its separate
strong continuity and uniform local boundedness. Section 3 is devoted to the non-
autonomous Kato classes P∗

f and P∗
m. In Section 4 we construct two parameter

additive functionals of Markov processes corresponding to time-dependent mea-
sures. The construction utilizes a special approximation method (see Definition
4.3). Section 5 contains the exponential estimates for the additive functionals de-
fined in Section 4. In Sections 6 and 7 we study the inheritance of properties of free
propagators by their Feynman-Kac perturbations. We discuss the strong continuity
of propagators on the space Lr, the (Lr −Lq)-smoothing property, and various ver-
sions of the Feller property. More results concerning the similarities in the behaviour
of semigroups (propagators) and their perturbations by potentials can be found in
[1, 2, 3, 4, 5, 6, 7, 14, 16, 17, 18, 19, 20, 21, 22, 32, 34, 37, 38, 39, 40, 42, 43, 44, 45]. In
Section 8 we establish that the Feller property, the Feller-Dynkin property, and the
BUC-property are inherited by Feynman-Kac propagators from free propagators
under additional restrictions on functions and time-dependent measures generating
Feynman-Kac propagators. In Section 9 we discuss the inheritance problem in the
case where transition densities are fundamental solutions to second order conserva-
tive parabolic partial differential equations. The last section of the paper (Section
10) concerns the relations between the forward and backward cases.
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2. Backward propagators on Banach spaces

We show in this section that a backward propagator is strongly continuous if
and only if it is separately strongly continuous and locally uniformly bounded.
This result (Theorem 2.2 below) was first formulated without proof in [19]. The
proof appeared in the CRM preprint [20].1 A similar result holds for propagators.

Let T > 0 and put DT = {(τ, t) : 0 ≤ τ ≤ t ≤ T}. If T = ∞, then we assume
that D∞ = {(τ, t) : 0 ≤ τ ≤ t < ∞}. For a Banach space B, the symbol L(B, B)
stands for the space of all bounded linear operators on B.

Definition 2.1. A two-parameter family of operators {W (t, τ ) ∈ L(B, B) : (τ, t)
∈ D∞} is called a propagator on B provided that the following conditions hold:

(i) W (t, τ ) = W (t, λ)W (λ, τ ) for 0 ≤ τ ≤ λ ≤ t < ∞;
(ii) W (τ, τ ) = I for 0 ≤ τ < ∞.

If the family W is defined on DT with T < ∞, then it will be assumed in (i) and
(ii) that (τ, t) ∈ DT .

A two parameter family of operators {Q(τ, t) ∈ L(B, B) : (τ, t) ∈ D∞} is called
a backward propagator on B provided that the following conditions hold:

(1) Q(τ, t) = Q(τ, λ)Q(λ, t) for 0 ≤ τ ≤ λ ≤ t < ∞;
(2) Q(t, t) = I for 0 ≤ t < ∞.

If the family Q is defined on DT with T < ∞, then it will be assumed in (1) and
(2) that (τ, t) ∈ DT .

It is easy to see that if T < ∞ and Q is a backward propagator on B, then
the family of operators defined by W (t, τ ) = Q(T − t, T − τ ) is a propagator on
B. Similarly, if W is a propagator on B, then the family Q defined by Q(τ, t) =
W (T − τ, T − t) is a backward propagator on B. The previous statements show
that practically any result about propagators has a counterpart for backward prop-
agators and vice versa.

It is said that a backward propagator Q is strongly continuous if for every x ∈ B,
the B-valued function (τ, t) → Q(τ, t)x is continuous. A backward propagator Q is
called uniformly bounded if ||Q(τ, t)||B→B ≤ M for all (τ, t) ∈ DT . If T = ∞, and
for every compact subset K of D∞, ||Q(τ, t)||B→B ≤ MK for all (τ, t) ∈ K, then Q
is called locally uniformly bounded. A backward propagator Q is called separately
strongly continuous if for every fixed t and x ∈ B, the function τ → Q(τ, t)x is
continuous on [0, t], and for every fixed τ and x ∈ B, the function t → Q(τ, t)x is
continuous on [τ, T ] (if T = ∞, then we consider the interval [t,∞) instead of the
interval [t, T ]).

Theorem 2.2. For a backward propagator Q on B, the following are equivalent:
(i) the strong continuity;
(ii) the strong separate continuity and the uniform local boundedness.

Proof. Using the uniform boundedness principle, we see that (i) implies (ii). Next,
let Q be a strongly separately continuous and locally uniformly bounded propagator.
Let (τ, t) ∈ DT , and suppose t′ and τ ′ are close to t and τ , respectively. We will
first assume that t > τ . Then for τ ′ close to τ , we have t > τ ′. Using the local

1After finishing our work on the present paper we found that Theorem 2.2 was also obtained
independently but later in [30].
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uniform boundedness condition and assuming that t′ ≥ t, we get that for every
x ∈ B,

I = ||Q(τ ′, t′)x − Q(τ, t)x||B
≤ ||Q(τ ′, t′)x − Q(τ ′, t)x||B + ||Q(τ ′, t)x − Q(τ, t)x||B
≤ ||Q(τ ′, t)(Q(t, t′)x − x)||B + ||Q(τ ′, t)x − Q(τ, t)x||B
≤ M ||Q(t, t′)x − x||B + ||Q(τ ′, t)x − Q(τ, t)x||B.

By the separate continuity of Q,

(6) lim
t′→t,τ ′→τ

I = 0.

If t′ < t, then

I ≤ ||Q(τ ′, t′)x − Q(τ ′, t)x||B + ||Q(τ ′, t)x − Q(τ, t)x||B
≤ ||Q(τ ′, t′)(x − Q(t′, t)x)||B + ||Q(τ ′, t)x − Q(τ, t)x||B
≤ M ||Q(t′, t)x − x||B + ||Q(τ ′, t)x − Q(τ, t)x||B,

and we again get formula (6).
Finally, let τ = t < τ ′ ≤ t′. Then the separate continuity of Q implies that for

every ε > 0 there exists λ > 0 such that λ > τ and ||Q(τ, λ)x− x||B ≤ ε. It follows
from the local uniform boundedness condition that

I = ||Q(τ ′, t′)x − x||B
≤ ||Q(τ ′, t′)x − Q(τ ′, λ)x||B + ||Q(τ ′, λ)x − Q(τ, λ)x||B

+ ||Q(τ, λ)x − x||B ≤ ||Q(τ ′, t′)(x − Q(t′, λ)x||B
+ ||Q(τ ′, λ)x − Q(τ, λ)x||B + ε ≤ M ||Q(t′, λ)x − x||B
+ ||Q(τ ′, λ)x − Q(τ, λ)x||B + ε ≤ M ||Q(t′, λ)x − Q(τ, λ)x||B
+ M ||Q(τ, λ)x − x||B + ||Q(τ ′, λ)x − Q(τ, λ)x||B + ε

≤ M ||Q(t′, λ)x − Q(τ, λ)x||B
+ ||Q(τ ′, λ)x − Q(τ, λ)x||B + (M + 1)ε.(7)

The constant M in (7) depends on t. It follows from (7) and from the separate
continuity of Q that there exists δ > 0 such that for τ ≤ τ ′ ≤ t′ < τ + δ, we have
I ≤ (2M + 2)ε. Therefore, (6) holds for τ = t < τ ′ ≤ t′.

This completes the proof of Theorem 2.2. �

3. Non-autonomous Kato classes of functions and measures

In this section we introduce and study the non-autonomous Kato classes P∗
f

and P∗
m. The subscripts f and m in P∗

f and P∗
m are the first letter of the words

“function” and “measure”. Let V be a Borel function on the set [0, T ] × E, where
T > 0 is a fixed number, and let µ be a family µ = {µ(t) : 0 ≤ t ≤ T} of signed Borel
measures on (E, E). Recall that we called such families time-dependent measures.
By |µ| = {|µ(t)| : 0 ≤ t ≤ T} is denoted the family consisting of variations of the
measures µ(t) with 0 ≤ t ≤ T . Let P be a transition probability function. For a
function V as above, put

(8) N(V )(τ, t, x) =
∫ t

τ

Y (τ, s)V (s)(x)ds, (τ, t) ∈ DT , x ∈ E.
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The function N(V ) is, in a sense, a potential of V . In the case of a time-dependent
measure µ we assume that P has a density p. Then we define the potential Nµ by

(9) N(µ)(τ, t, x) =
∫ t

τ

Y (τ, s)µ(s)(x)ds, (τ, t) ∈ DT , x ∈ E.

It is assumed in (8) and (9) that the integrals on the right-hand side make sense.
The next definition concerns backward non-autonomous Kato classes.

Definition 3.1. Let P ∈ M. Then it is said that V belongs to the class P̂∗
f

provided that
sup

(τ,t)∈DT

sup
x∈E

N(|V |)(τ, t, x) < ∞.

Let V ∈ P̂∗
f . Then it is said that V belongs to the class P∗

f provided that

lim
t−τ→0+

sup
x∈E

N(|V |)(τ, t, x) = 0.

Suppose that P ∈ M has a density p. Then it is said that µ belongs to the class
P̂∗

m provided that
sup

τ :(τ,t)∈DT

sup
x∈E

N(|µ|)(τ, t, x) < ∞.

If µ ∈ P̂∗
m, then it is said that µ belongs to the class P∗

m provided that

lim
t−τ→0+

sup
x∈E

N(|µ|)(τ, t, x) = 0.

In the case of the heat semigroup, the classes in Definition 3.1 were introduced
in [17, 21].

Let V ∈ P̂∗
f , µ ∈ P̂∗

m, and denote

(10) ||V ||f = sup
τ :0≤τ≤T

sup
x∈E

N(|µ|)(τ, T, x)

and

(11) ||µ||m = sup
τ :0≤τ≤T

sup
x∈E

N(|µ|)(τ, T, x).

It will be shown below that under certain restrictions the non-autonomous Kato
classes in Definition 3.1 equipped with the norms defined by (10) and (11) are
Banach spaces.

Remark 3.2. Let l denote the Lebesgue measure on the σ-algebra B[0,T ] of all Borel
subsets of [0, T ]. By l[τ,T ] is denoted the restriction of l to [τ, T ]. For every τ ∈ [0, T ]
and x ∈ E, define a measure ξτ,x on the σ-algebra σ(B[τ,T ] × E) as follows: For
U ∈ σ(B[τ,T ] × E),

ξτ,x(U) =
∫

U

P (τ, x; u, dy)du.

Then, for V ∈ P̂∗
f , the condition ||V ||f = 0 means that for all τ ∈ [0, T ) and

x ∈ E, V (u, y) = 0 holds ξτ,x-a.e. on [τ, T ] × E. If P has a density p such that
p(τ, x; u, y) > 0 for all τ , x, u, and y, then the condition ||V ||f = 0 is equivalent to
the condition V (u, y) = 0 l × m-a.e. on [0, T ] × E. If there exists a density p, and
if µ ∈ P̂∗

m, then the condition ||µ||m = 0 means that∫ T

τ

∫
E

p(τ, x; u, y)d|µ(u)|(y)du = 0
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for all τ and x. If p is strictly positive, then we get the following equivalent condi-
tion: µ(u) = 0 for l-a.a. u ∈ [0, T ].

Taking into account the identifications described in Remark 4.3, we see that
(P̂∗

f , || · ||f ) and (P̂∗
m, || · ||m) are normed spaces. In addition, they are Banach

spaces.

Lemma 3.3. Let P ∈ M. Then (P̂∗
f , ||·||f ) is a Banach space, and (P∗

f , ||·||f ) is its
closed subspace. Moreover, if P has a strictly positive density p, then (P̂∗

m, || · ||m)
is a Banach space, and P∗

m is its closed subspace.

Proof. We will prove that if p is strictly positive, then the space P̂∗
m is complete,

and P∗
m is a closed subspace of P̂∗

m. The rest of the proof of Lemma 3.3 is similar.
Let µk ∈ P̂∗

m, k ≥ 1, be a sequence such that

(12)
∞∑

k=1

||µk||m =
∑

k

sup
τ :0≤τ≤T

sup
x∈E

∫ T

τ

du

∫
E

p(τ, x; u, y)d|µk(u, y)| < ∞.

Then for every x ∈ E, we have∫ T

0

du

∫
E

p(0, x; u, y)d
∞∑

k=1

|µk(u, y)| < ∞.

Therefore, there exists a Borel set Ux ∈ [0, T ] such that l(Ux) = T and

(13)
∫

E

p(0, x; u, y)d
∞∑

k=1

|µk(u, y)| < ∞

for all u ∈ Ux. Fix x ∈ E. Then (13) implies that for every j ≥ 1 and u ∈ Ux,
∞∑

k=1

|µk(u)|(Aj,u) < ∞,

where Aj,u = {y ∈ E : p(0, x; u, y) > j−1}. Hence,
∑

µk(u) is a finite signed Borel
measure on every set Aj,u for all u ∈ Ux. Since the strict positivity of p implies
the equality

⋃∞
j=1 Aj,u = E for all u ∈ Ux, the measure µ(u) =

∑
µk(u) is a signed

Borel measure on E for all u ∈ Ux, and hence l-a.e. on [0, T ]. It follows from (12)
that µ ∈ P̂∗

m, and it is not difficult to show that the series
∑∞

k=1 µk converges to µ

in the space P̂∗
m. This proves the completeness of P̂∗

m.
Now let νk ∈ P∗

m, k ≥ 1, be such that νk → ν in P̂∗
m. We have∫ t

τ

Y (τ, u)|µ(u)|(x)du ≤
∫ t

τ

Y (τ, u)|µ(u) − µk(u)|(x)du

+
∫ t

τ

Y (τ, u)|µk(u)|(x)du.(14)

It follows from (14) that µ ∈ P∗
m. Hence, the class P∗

m is a closed subspace of the
space P̂∗

m.
This completes the proof of Lemma 3.3. �

The next result provides a description of the classes P∗
f and P∗

m in terms of the
potential operator N .
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Lemma 3.4. (a) Let P ∈ M and V ∈ P̂∗
f . Then V ∈ P∗

f if and only if

(15) lim
t′−t→0+

sup
τ :0≤τ≤t

sup
x∈E

[N(|V |)(τ, t′, x) − N(|V |)(τ, t, x)] = 0.

(b) Suppose that P ∈ M has a density p, and let µ ∈ P̂∗
m. Then µ ∈ P∗

m if and
only if (15) holds with µ instead of V .

Proof. Let V ∈ P∗
f . Then we have

N(|V |)(τ, t′, x)−N(|V |)(τ, t, x) =
∫ t′

t

Y (τ, u)|V (u)|(x)du = Y (τ, t)N(|V |)(t, t′)(x).

It follows that

sup
x∈E

[N(|V |)(τ, t′, x) − N(|V |)(τ, t, x)] ≤ sup
x∈E

N(|V |)(t, t′, x).

It is clear that the previous estimate implies (15).
Now assume that (15) holds. Then we have

lim
t−τ→0

sup
x∈E

N(|V |)(τ, t, x) = lim
t−τ→0

sup
x∈E

[N(|V |)(τ, t, x)− N(|V |)(τ, τ, x)] = 0.

Therefore, V ∈ P∗
f . This establishes part (a) of Lemma 3.4. The proof of part (b)

is similar. �

Remark 3.5. It is easy to see from the proof of Lemma 3.4 that

lim
t′−t→0+

sup
τ :0≤τ≤t

sup
x∈E

|N(V )(τ, t′, x) − N(V )(τ, t, x)| = 0.

4. Power type estimates and the functional Aµ

In this section we explain how to construct the additive functional Aµ, µ ∈ P∗
m,

appearing in the definition of the backward Feynman-Kac propagator Yµ. Such
constuctions are standard in the time-homogeneous case (see, e.g., Section 5.1 in
[13]). Moreover, under certain restrictions, there is a one-to-one correspondence
between additive functionals and measures (the Revuz correspondence; see, e.g.,
[35], Chapter 10). Although the structure of the proof of the existence result
for the functional Aµ below is similar to that in the time-homogeneous case, we
decided to include the proof of Theorem 4.6 since the non-homogeneous case has
its own peculiarities. Note that the class of time-dependent measures P∗

m is not
completely analogous to the classical Kato class of measures, and that the estimates
for the additive functionals AV and Aµ, obtained below for V and µ, which are not
necessarily positive, have independent interest.

The following functions will be used in Sections 4 and 5:

M(V )(τ, t) = sup
r:τ≤r≤t

sup
x∈E

|N(V )(r, t, x)|

= sup
r:τ≤r≤t

sup
x∈E

|
∫ t

r

Y (τ, s)V (s)(x)ds|(16)

and

M(µ)(τ, t) = sup
r:τ≤r≤t

sup
x∈E

|N(µ)(r, t, x)|

= sup
r:τ≤r≤t

sup
x∈E

|
∫ t

r

Y (τ, s)µ(s)(x)ds|.(17)
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The next result is an approximation lemma for functions and time-dependent
measures. Note that one cannot always approximate a time-dependent measure by
functions in the norm topology of the space P̂∗

m (see Lemma 3.3). Therefore, one
has to look for weaker approximations.

Lemma 4.1. (a) Let P ∈ M and V ∈ P∗
f . For k ≥ 1, 0 ≤ τ ≤ T , and x ∈ E, put

(18) gk(τ, x) = kN(V )(τ, min(τ +
1
k

, T ), x).

Then the following conditions hold: gk ∈ P∗
f for all k ≥ 1,

(19) lim
k→∞

sup
(τ,t)∈DT

sup
x∈E

|N(V − gk)(τ, t, x)| = 0,

and

(20) lim
t−τ→0+

sup
k≥1

sup
x∈E

N(|gk|)(τ, t, x) = 0.

(b) Suppose that P ∈ M has a density p, and let µ ∈ P∗
m. For k ≥ 1, 0 ≤ τ ≤ T ,

and x ∈ E, put

(21) gk(τ, x) = kN(µ)(τ, min(τ +
1
k

, T ), x).

Then the conditions in part (a) of Lemma 4.1 hold with µ instead of V .

Proof. (a) We have

N(gk)(τ, t, x) = k

∫ t

τ

Y (τ, s)ds

∫ min(s+ 1
k ,T )

s

Y (s, u)V (u)(x)du

= k

∫ t

τ

ds

∫ min(s+ 1
k ,T )

s

Y (τ, u)V (u)(x)du

= k

∫ min(t+ 1
k ,T )

τ

Y (τ, u)V (u)(x)du

∫ t

τ

χCk(u)(s)ds,(22)

where χCk(u) is the characteristic function of the set Ck(u) = {s : s ≤ u ≤
min(s + 1

k , T )}. It follows from (22) that

N(gk)(τ, t, x) = k

∫ min(τ+ 1
k ,T )

τ

Y (τ, u)V (u)(x)du

∫ t

τ

χCk(u)(s)ds

+
∫ t

min(τ+ 1
k ,t)

Y (τ, u)V (u)(x)du

+ k

∫ min(t+ 1
k ,T )

t

Y (τ, u)V (u)(x)du

∫ t

τ

χCk(u)(s)ds.(23)

Using (23), we obtain

|N(V − gk)(τ, t, x)| ≤
∫ min(τ+ 1

k ,t)

τ

Y (τ, u)|V (u)|(x)du

+ k

∫ min(τ+ 1
k ,t)

τ

Y (τ, u)|V (u)|(x)du

∫ t

τ

χCk(u)(s)ds

+ k

∫ min(t+ 1
k ,T )

t

Y (τ, u)|V (u)|(x)du

∫ t

τ

χCk(u)(s)ds.
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Since the Lebesgue measure of the set Ck(u) does not exceed 1
k , we get

|N(V − gk)(τ, t, x)| ≤ 2N(|V |)(τ, min(τ +
1
k

, t), x)

+ Y (τ, t)
∫ min(t+ 1

k ,T )

t

Y (t, u)|V (u)|(x)du

= 2N(|V |)(τ, min(τ +
1
k

, t), x)

+ Y (τ, t)N(|V |)(t, min(t +
1
k

, T )(x).

Therefore,

sup
x∈E

|N(V − gk)(τ, t, x)| ≤ 2 sup
x∈E

N(|V |)(τ, min(τ +
1
k

, t), x)

+ sup
x∈E

N(|V |)(t, min(t +
1
k

, T ), x).(24)

Now it is clear that (24) and the definition of the class P∗
f imply condition (19) in

Lemma 4.1.
Since

N(|gk|)(τ, t, x) ≤ k

∫ t

τ

Y (τ, s)ds

∫ min(s+ 1
k ,T )

s

Y (s, u)|V (u)|(x)du

= k

∫ t

τ

ds

∫ min(s+ 1
k ,T )

s

Y (τ, u)|V (u)|(x)du

= k

∫ min(t+ 1
k ,T )

τ

Y (τ, u)|V (u)|(x)du

∫
τ,t

χCk(u)(s)ds,

we get

(25) N(|gk|)(τ, t, x) ≤ k min(t − τ,
1
k

)N(|V |)(τ, min(t +
1
k

, T ), x).

It is not hard to see that the condition gk ∈ P∗
f , k ≥ 1, follows from (25).

It remains to show that condition (20) holds. Let ε > 0. Then (25) and Lemma
3.4 imply that there exist δ1 > 0 and k0 > 1 such that

(26) sup
x∈E

N(|gk|)(τ, t, x) < ε

for all t − τ < δ1 and k ≥ k0. Moreover, since gk ∈ P∗
f , there exists δ2 > 0 such

that δ2 < δ1 and (26) holds for all t − τ < δ2 and k ≤ k0. Hence, (26) holds for all
k ≥ 1 and t − τ < δ2, and we get (20).

This completes the proof of part (a) of Lemma 4.1. The proof of part (b) is
similar. �

Remark 4.2. Suppose that the conditions in part (b) of Lemma 4.1 hold. Then it
follows from (19) that

lim
k→∞

M(gk)(τ, t) = M(µ)(τ, t).

Moreover, (25) implies

lim sup
k→∞

N(|gk|)(τ, t, x) ≤ N(|µ|)(τ, t, x)
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and
lim sup

k→∞
M(|gk|)(τ, t) ≤ M(|µ|)(τ, t).

In the next definition, we introduce a special approximation method. It is based
on the properties of the approximating sequence gk in Lemma 4.1.

Definition 4.3. Let P ∈ M, V ∈ P∗
f , and Vk ∈ P∗

f , k ≥ 1. By definition, the
sequence Vk approaches V in the potential sense provided that

lim
k→∞

sup
(τ,t)∈DT

sup
x∈E

|N(V − Vk)(τ, t, x)| = 0

and
lim

t−τ→0+
sup
k≥1

sup
x∈E

N(|Vk|)(τ, t, x) = 0.

Suppose that P ∈ M has a density p. By definition, a sequence µk ∈ P∗
m, k ≥ 1,

approaches µ ∈ P∗
f in the potential sense provided that

lim
k→∞

sup
(τ,t)∈DT

sup
x∈E

|N(µ − µk)(τ, t, x)| = 0

and
lim

t−τ→0+
sup
k≥1

sup
x∈E

N(|µk|)(τ, t, x) = 0.

Remark 4.4. It follows from (18), (21), and from the definition of the class P̂∗
f that

the functions gk in Lemma 4.1 are bounded. Hence, for any V ∈ P∗
f (µ ∈ P∗

m),
there exists a sequence of bounded functions approaching the function V (the time-
dependent measure µ) in the potential sense.

Lemma 4.5. Suppose that

lim
t−τ→0+

sup
k≥1

sup
x∈E

N(|Vk|)(τ, t, x) = 0.

Then supk ||Vk||f < ∞. The same result is true for time-dependent measures.

Proof. If the condition in Lemma 4.5 holds, then there exists δ > 0 such that for
t − τ < δ and k ≥ 1,

(27) sup
x∈E

sup
k≥1

N(|Vk|)(τ, t, x) < 1.

For every (τ, t) ∈ DT with τ < t, there exists a partition τ = t0 < · · · < tn = t such
that max{|tj+1 − tj | : 0 ≤ j ≤ n − 1} < δ and n < δ−1T . Moreover,

N(|Vk|)(τ, t, x) =
n−1∑
j=0

∫ tj+1

tj

Y (τ, s)|Vk|(x)ds

=
n−1∑
j=0

Y (τ, tj)
∫ tj+1

tj

Y (tj , s)|Vk|(x)ds

=
n−1∑
j=0

Y (τ, tj)N(|Vk|)(tj , tj+1)(x).

By (27), we have

sup
k≥1

sup
x∈E

N(|Vk|)(τ, t, x) ≤
n−1∑
k≥1

N(|Nk|)(tj , tj+1, x) ≤ n <
T

δ
.
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This completes the proof of Lemma 4.5 in the case of functions. The case of
measures is similar. �

Let V be a non-negative function from the class P∗
f . Then the functional AV

defined by AV (τ, t) =
∫ t

τ

V (s, Xs)ds is a non-decreasing continuous additive func-

tional. More precisely, it possesses the following properties:
(1) For all τ ≤ t, the random variable AV (τ, t) is Fτ

t -measurable.
(2) For all τ and x ∈ E, AV (τ, τ ) = 0 Pτ,x-a.s.
(3) For all τ ≤ t and x ∈ E, the function t → AV (τ, t), τ ≤ t ≤ T , is non-

decreasing and continuous Pτ,x-a.s.
(4) For all τ ≤ λ ≤ t, AV (τ, t) = AV (τ, λ) + AV (λ, t) Pτ,x-a.s.
(5) For all τ ≤ t and x ∈ E, Eτ,x [AV (τ, t)] = N(V )(τ, t, x).

Theorem 4.6. Let P ∈ M be a transition probability function possessing a density
p. Then for every family µ of nonnegative measures from the class P∗

m, there exists
a functional Aµ(τ, t), (τ, t) ∈ DT , for which conditions (1)–(5) above hold.

Proof of Theorem 4.6. We will need the following lemma:

Lemma 4.7. Let P ∈ M and V ∈ P∗
f . Then for every (τ, t) ∈ DT , x ∈ E, and

any integer n ≥ 2,

(28) |Eτ,xAV (τ, t)n| ≤ n!N(|V |)(τ, t, x)M(|V |)(τ, t)n−2M(V )(τ, t).

�

Proof. Using the Markov property and taking into account that V ∈ P∗
f , we obtain

Eτ,xAV (τ, t)2 = 2Eτ,x

∫ t

τ

V (s, Xs)ds

∫ t

s

V (u, Xu)du

= 2Eτ,x

∫ t

τ

V (s, Xs)ds

∫ t

s

Eτ,x(V (u, Xu)|Fτ
s )du

= 2Eτ,x

∫ t

τ

V (s, Xs)ds

∫ t

s

Es,zV (u, Xu)du|z=Xs

≤ 2
∫ t

τ

dsY (τ, s)|V (s)|(x)ds sup
s:τ≤s≤t

sup
y∈E

|
∫ t

s

Y (s, u)V (u)(y)du|.(29)

Now it is clear that (29) implies (28) with n = 2.
Next, let n > 2 be any positive integer. By induction, we get

Eτ,xAV (τ, t)n

= n!Eτ,x

∫ t

τ

V (t1, Xt1)dt1

∫ t

t1

V (t2, Xt2)dt2 · · ·
∫ t

tn−1

V (tn, Xtn
)dtn

≤ n!
∫ t

τ

Y (τ, s)|V (s)|(x)ds sup
r:τ≤r≤t

sup
y∈E

[
∫ t

r

Y (r, u)|V (u)|(y)du]n−2

× sup
r:τ≤r≤t

sup
y∈E

|
∫ t

r

Y (r, u)V (u)(y)du|.

It is clear that the previous estimate implies (28).
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Corollary 4.8. Suppose that the conditions in Lemma 4.7 are satisfied. Then for
any odd integer n ≥ 3,
(30)

Eτ,x|AV (τ, t)|n ≤
√

(n − 1)!(n + 1)!N(|V |)(τ, t, x)M(|V |)(τ, t)n−2M(V )(τ, t).

�

Proof. If n ≥ 3 is odd, then

Eτ,x|AV (τ, t)|n ≤ {Eτ,xAV (τ, t)n−1} 1
2 {Eτ,xAV (τ, t)n+1} 1

2 .

Now it is clear that (30) follows from Lemma 4.7. �

Lemma 4.7 and Corollary 4.8 provide pointwise estimates for the expression
Eτ,x|AV (τ, t)|n. The next result shows that stronger estimates hold.

Lemma 4.9. Let P ∈ M and V ∈ P∗
f . Then for any τ with 0 ≤ τ ≤ T , any δ > 0

such that τ + δ ≤ T , and any even integer n ≥ 2, the following estimate holds:

(31) sup
x∈E

Eτ,x sup
t:τ≤t≤τ+δ

AV (τ, t)n ≤ cnM(|V |)(τ, τ + δ)n−1M(V )(τ, τ + δ),

where

(32) cn = 2n[(
n

n − 1
)nn! + 1].

Moreover, for any odd integer n ≥ 3, we have

(33) sup
x∈E

Eτ,x sup
t:τ≤t≤τ+δ

|AV (τ, t)|n ≤ cnM(|V |)(τ, τ + δ)n−1M(V )(τ, τ + δ),

where cn = √
cn−1cn+1.

Remark 4.10. For n = 1, we have

(34) sup
x∈E

Eτ,x sup
t:τ≤t≤τ+δ

|AV (τ, t)| ≤ {c2M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)} 1
2 .

Estimate (31) easily follows from (28) with n = 2.

Proof of Lemma 4.9. We will prove estimate (31). Estimate (33) follows from (31)
and Hölder’s inequality.

Let n ≥ 2 be an even integer, and let V ∈ P∗
f . For given τ , x, and t with

τ ≤ t ≤ τ + δ, put Mt = Eτ,x(AV (τ, τ + δ)|Fτ
t ). Then Mt is an Fτ

t -martingale.
Moreover, it belongs to the space Ln (see (28)). Using the Markov property, we see
that for every t with τ ≤ t ≤ τ + δ,

Mt = AV (τ, t) +
∫ τ+δ

t

Eτ,x(V (s, Xs)|Fτ
t )ds

= AV (τ, t) +
∫ τ+δ

t

Y (t, s)V (s)(Xt)ds

Pτ,x-a.s. Hence, Mt is a modification of the functional

M̃t = AV (τ, t) + N(V )(t, τ + δ, Xt).
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Fix a partition τ = t0 < t1 < · · · < tk = τ + δ. By Doob’s inequality (see [35]),
we get

Eτ,x sup
j:0≤j≤k

AV (τ, tj)n

≤ 2nEτ,x sup
j:0≤j≤k

Mn
tj

+ 2nEτ,x sup
j:0≤j≤k

|N(V )(tj , τ + δ, Xtj
)|n

≤ 2n(
n

n − 1
)nEτ,xAV (τ, τ + δ)n + 2n[sup

z∈E
sup

s:τ≤s≤τ+δ
|N(V )(s, τ + δ, z)|]n

≤ 2n(
n

n − 1
)nEτ,xAV (τ, τ + δ)n + 2nM(V )(τ, τ + δ)n.(35)

It follows from (28) and (35) that

(36) Eτ,x sup
j:0≤j≤k

AV (τ, tj)n ≤ cnM(|V |)(τ, τ + δ)n−1M(V )(τ, τ + δ)

for all x ∈ E where cn is defined by (32). Next we choose a sequence of refinements
of the partition τ = t0 < t1 < · · · < tk = τ + δ on the left-hand side of (36)
such that the maximum length of the partition intervals tends to 0, and pass to the
limit, using the monotone convergence theorem and the continuity of the functional
AV (τ, t) with respect to the variable t. This establishes estimate (31) and completes
the proof of Lemma 4.9. �

Let us return to the proof of Theorem 4.6. For a non-negative family µ ∈ P∗
m,

define the sequence gk by (21). Using (31) and (33), we obtain

sup
x∈E

Eτ,x sup
t:τ≤t≤τ+δ

|Agk−gj
(τ, t)|n ≤ cnM(|gk −gj |)(τ, τ +δ)n−1M(gk −gj)(τ, τ +δ).

It follows from Lemma 4.1 that

lim
j,k→∞

sup
τ :0≤τ≤T

sup
x∈E

Eτ,x sup
t:τ≤t≤τ+δ

|Agk
(τ, t)− Agj

(τ, t)|n = 0.

Hence, there exists a functional Aµ such that

(37) lim
k→∞

sup
τ :0≤τ≤T

sup
x∈E

Eτ,x sup
t:τ≤t≤τ+δ

|Aµ(τ, t) − Agk
(τ, t)|n = 0.

Using the fact that every functional Agk
satisfies conditions (1)-(5) in Theorem 4.6,

we can prove that the functional Aµ defined by (37) also satisfies these conditions.
This completes the proof of Theorem 4.6.
It is not difficult to see that the functional Aµ does not depend on the choice of

a sequence gk such that gk approaches µ in the potential sense. Actually, more is
true.

Lemma 4.11. Let µ be a non-negative family from the class P∗
m, and let A1 and

A2 be two functionals satisfying conditions (1)-(5) in Theorem 4.6. Then for every
0 ≤ τ ≤ T and x ∈ Rn, the processes A1(τ, t) and A2(τ, t) are indistinguishable.

The proof of Lemma 4.11 is standard (see, e.g., the proof of Theorem 5.1.2 in
[13]).

In the next definition, we extend the functional Aµ to the case of signed time-
dependent measures.

Definition 4.12. Let µ ∈ P∗
m. Denote by µ+ and µ− the positive and the negative

variation of the family µ, respectively. Then the functional Aµ is defined as follows:

Aµ(τ, t) = Aµ+(τ, t) − Aµ−(τ, t).
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Lemma 4.13. Let P ∈ M be a transition probability function possessing a density
p, and let µ ∈ P∗

m. Then estimates (31) and (33) hold with µ instead of V .

Proof. We will prove estimate (31) for a time-dependent measure µ. It is clear that
estimate (33) for µ follows from (31).

Let µ ∈ P∗
m, and let gk be the sequence constructed for µ in Lemma 4.1. Then

gk ∈ P∗
f . Applying estimate (31) to the sequence gk, we see that

(38) sup
x∈E

Eτ,x sup
t:τ≤t≤τ+δ

|Agk
(τ, t)|n ≤ cnM(|gk|)(τ, t)n−1M(gk)(τ, t).

It follows from Remark 4.2 that

(39) lim sup
k→∞

M(|gk|)(τ, t) ≤ M(|µ|)(τ, t)

and

(40) M(gk)(τ, t) → M(µ)(τ, t)

as k → ∞. Now using (37), (38), (39), and (40) we see that (31) holds for µ.
This completes the proof of Lemma 4.13. �

5. Exponential estimates for non-autonomous functionals

The non-autonomous multiplicative functionals (τ, t) �→ exp{−
∫ t

τ
V (s, Xs)}ds

and (τ, t) �→ exp{−Aµ(t, τ )} play an important role in the theory of Feynman-
Kac propagators. These functionals are called the Kac functionals. We begin this
section with a non-autonomous version of Khas′minski’s Lemma. This lemma and
similar results imply that the Feynman-Kac propagators YV and Yµ with V ∈ P∗

f

and µ ∈ P∗
f are uniformly bounded on the space L∞

E .

Lemma 5.1. (a) Let P ∈ M, V ∈ P∗
f , and let (τ, t) ∈ DT be such that M(|V |)(τ, t)

< 1. Then

(41) sup
x∈E

Eτ,x exp{
∫ t

τ

|V (s, Xs)|ds} ≤ 1
1 − M(|V |)(τ, t)

.

(b) If P ∈ M has a density p, µ ∈ P∗
m, and (τ, t) ∈ DT is such that

M(|µ|)(τ, t) < 1, then

(42) sup
x∈E

Eτ,x exp{A|µ|(τ, t)} ≤ 1
1 − M(|µ|)(τ, t)

.

Lemma 5.1 can be obtained as follows. Estimate (28) gives

(43) Eτ,x

A|V |(τ, t)n

n!
≤ M(|V |)(τ, t)n.

It is clear that (43) implies (41). Now arguing as in the proof of Lemma 4.13, we
see that estimate (42) follows from (41).

The next assertions contain more exponential estimates.

Lemma 5.2. (a) Let P ∈ M, V ∈ P∗
f , and let (τ, t) ∈ DT be such that M(|V |)(t, τ )

< 1. Then

Eτ,x exp{|AV (τ, t)|} ≤ 1 + {2N(|V |)(τ, t, x)M(V )(τ, t)} 1
2

+
2
√

3
3

N(|V |)(τ, t, x)M(V )(τ, t)
1 − M(|V |)(τ, t)

.(44)
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(b) If P ∈ M has a density p, µ ∈ P∗
m, and (τ, t) ∈ DT is such that M(|µ|)(τ, t) <

1, then estimate (44) holds with µ instead of V .

Proof. Estimate (44) follows from Lemma 4.7, Corollary 4.8, and the fact that√
(m − 1)!(m + 1)! ≤ 2

√
3

3 (m!) for all m ≥ 3. The proof of part (b) is similar. Here
we reason as in the proof of Lemma 4.13. �
Lemma 5.3. (a) Let P ∈ M, q ≥ 1, 1 < r < ∞, 1

r + 1
r′ = 1, and let V

and W be functions from the class P∗
f . Suppose that (τ, t) ∈ DT is such that

M(rq|W |)(τ, t) < 1 and M(r′q|V − W |)(τ, t) < 1. Then

Eτ,x| exp{AV (τ, t)} − exp{AW (τ, t)}|q

≤ 1
(1 − M(rq|W |)(τ, t))

1
r

{[2N(r′q|V − W |)(τ, t, x)M(r′q(V − W ))(τ, t)]
1
2

+
2
√

3
3

N(r′q|V − W |)(τ, t, x)M(r′q(V − W ))(τ, t)
1 − M(r′q|V − W |)(τ, t)

} 1
r′ .(45)

(b) Suppose that P ∈ M has a density p, and let q ≥ 1, 1 < r < ∞, 1
r + 1

r′ = 1,
and µ, ν ∈ P∗

m. Let (τ, t) ∈ DT be such that

M(rq|ν|)(τ, t) < 1 and M(r′q|µ − ν|)(τ, t) < 1.

Then

Eτ,x| exp{Aµ(τ, t)} − exp{Aν(τ, t)}|q

≤ 1
(1 − M(rq|ν|)(τ, t))

1
r

{[2N(r′q|µ − ν|)(τ, t, x)M(r′q(µ − ν))(τ, t)]
1
2

+
2
√

3
3

N(r′q|µ − ν|)(τ, t, x)M(r′q(µ − ν))(τ, t)
1 − M(r′q|µ − ν|)(τ, t)

} 1
r′ .(46)

Proof. Part (a). It is not difficult to prove that

(47) |ea − 1|b ≤ e|a|b − 1,

for a ∈ R and b ≥ 1. Using (47) and Hölder’s inequality, we get

Eτ,x| exp{AV (τ, t)} − exp{AW (τ, t)}|q

≤ {Eτ,x exp{ArqW (τ, t)}} 1
r {Eτ,x| exp{AV −W (τ, t)} − 1|r

′q} 1
r′

≤ {Eτ,x exp{Arq|W |(τ, t)} 1
r {Eτ,x exp{|Ar′q(V −W )(τ, t)|} − 1} 1

r′ .(48)

Now it is clear that (45) follows from (41), (44) and (48).
Part (b). We will first use Lemma 4.1 to find the approximating sequences gk (for

µ) and hk (for ν). By the assumptions, M(rq|ν|)(τ, t) < 1 and M(r′q|µ−ν|)(τ, t) <
1. Using Remark 4.2, we see that there exists a sequence k′ of positive integers such
that

M(rq|hk′ |)(τ, t) < 1, M(r′q|gk′ − hk′ |)(τ, t) < 1,

lim
k′→∞

Agk′ (τ, t) = Aµ(τ, t), lim
k′→∞

Ahk′ (τ, t) = Aν(τ, t),

lim sup
k′→∞

M(|hk′ |)(τ, t) ≤ M(|µ|)(τ, t),

lim sup
k′→∞

M(|gk′ − hk′ |)(τ, t) ≤ M(|µ − ν|)(τ, t),

lim sup
k′→∞

N(|gk′ − hk′ |)(τ, t, x) ≤ N(|µ − ν|)(τ, t, x),
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and

lim
k′→∞

M(gk′ − hk′)(τ, t) = M(µ − ν)(τ, t).

It is not hard to get from (45) that

Eτ,x| exp{Agk′ (τ, t)} − exp{Ahk′ (τ, t)}|q ≤ 1
(1 − M(rq|hk′ |)(τ, t))

1
r

×{[2N(r′q|gk′ − hk′ |)(τ, t, x)M(r′q(gk′ − hk′))(τ, t)]
1
2

+
2
√

3
3

N(r′q|gk′ − hk′ |)(τ, t, x)M(r′q(gk′ − hk′))(τ, t)
1 − M(r′q|gk′ − hk′ |)(τ, t)

} 1
r′ .(49)

Using Fatou’s Lemma in (49), we see that estimate (46) holds.
This completes the proof of Lemma 5.3. �

It follows from formula (32) that cn ≤ c2nn!. However, this estimate is not
strong enough to derive an exponential estimate for the functional AV by using
(31) and (33). We will obtain such an estimate by modifying the proof of Lemma
4.9.

Theorem 5.4. (a) Let P ∈ M and V ∈ P∗
f . Then for every τ with 0 ≤ τ ≤ T and

every δ > 0 such that τ + δ ≤ T and M(|V |)(τ, τ + δ) < 1, the following estimate
holds:

sup
x∈E

Eτ,x exp{ sup
t:τ≤t≤τ+δ

|AV (τ, t)|} ≤ exp{M(V )(τ, τ + δ)}

× (1 + c{M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)} 1
2

+ c
M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)

1 − M(|V |)(τ, τ + δ)
).(50)

(b) Suppose that P ∈ M has a density p, and let µ ∈ P∗
m. Then for every τ with

0 ≤ τ ≤ T and every δ > 0 such that τ + δ ≤ T and M(|µ|)(τ, τ + δ) < 1, the
following estimate holds:

sup
x∈E

Eτ,x exp{ sup
t:τ≤t≤τ+δ

|Aµ(τ, t)|} ≤ exp{M(µ)(τ, τ + δ)}

× (1 + c{M(|µ|)(τ, τ + δ)M(µ)(τ, τ + δ)} 1
2

+ c
M(|µ|)(τ, τ + δ)M(µ)(τ, τ + δ)

1 − M(|µ|)(τ, τ + δ)
).

Proof. Using the same notation as in the proof of Lemma 4.9 and applying Doob’s
inequality, we see that for every n ≥ 2,

Eτ,x sup
j:0≤j≤k

|Mtj
|n ≤ (

n

n − 1
)nEτ,x|AV (τ, τ + δ)|n

≤ (
n

n − 1
)nn!M(|V |)(τ, τ + δ)n−1M(V )(τ, τ + δ).
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Dividing the previous inequality by n!, adding the resulting inequalities, and finally
using (31) and the equality Mt = AV (τ, t) + N(V )(t, t + δ, Xt), we get

Eτ,x exp{ sup
j:0≤j≤k

|Mtj
|} ≤ 1 + Eτ,x sup

j:0≤j≤k
|Mtj

|

+ c
M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)

1 − M(|V |)(τ, τ + δ)
≤ 1 + Eτ,x sup

j:0≤j≤k
|AV (τ, tj)|

+ Eτ,x sup
j:0≤j≤k

|N(V )(tj , τ + δ, Xtj
)|

+ c
M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)

1 − M(|V |)(τ, τ + δ)

≤ 1 + {Eτ,x sup
j:0≤j≤k

|AV (τ, tj)|2}
1
2

+ M(V )(τ, τ + δ) + c
M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)

1 − M(|V |)(τ, τ + δ)

≤ 1 + {c2M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)} 1
2

+ M(V )(τ, τ + δ) + c
M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)

1 − M(|V |)(τ, τ + δ)
.(51)

We also have

Eτ,x exp{ sup
j:0≤j≤k

|Mtj
|}

≥ Eτ,x exp{ sup
j:0≤j≤k

|AV (τ, tj)| − sup
j:0≤j≤k

|N(V )(tj , τ + δ, Xtj
)|}

≥ exp{−M(V )(τ, τ + δ)}Eτ,x exp{ sup
j:0≤j≤k

|AV (τ, tj)|}.(52)

It follows from (51) and (52) that

Eτ,x exp{ sup
j:0≤j≤k

|AV (τ, tj)|} ≤ exp{M(V )(τ, τ + δ)}

× [1 + {c2M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)} 1
2

+ M(V )(τ, τ + δ) + c
M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)

1 − M(|V |)(τ, τ + δ)
].

Therefore,

Eτ,x exp{ sup
j:0≤j≤k

|AV (τ, tj)|} ≤ exp{M(V )(τ, τ + δ)}

× (1 + c{M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)} 1
2

+ c
M(|V |)(τ, τ + δ)M(V )(τ, τ + δ)

1 − M(|V |)(τ, τ + δ)
).(53)

Now we see that for a sequence of refinements of the partition τ = t0 < t1 <
· · · < tk = τ + δ on the left-hand side of (53) such that the maximum length of
the partition intervals tends to 0, we can pass to the limit using the monotone
convergence theorem and the continuity of the functional AV (τ, t) with respect to
t. It follows that estimate (50) holds. The proof of part (b) of Theorem 5.4 is
similar. Here we use the ideas in the proof of part (b) of Lemma 5.3. �
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6. The Lr
-boundedness and the (Lr − Lq)-smoothing property

of backward Feynman-Kac propagators

In this section we discuss the inheritance of properties of free propagators by
the corresponding Feynman-Kac propagators. This discussion will be continued in
Section 7. Various inheritance theorems are known for the Kato class perturbations
of semigroups generated by homogeneous Markov processes (see, e.g., [6]). Thus, it
may seem natural to use these results to solve the inheritance problem for backward
Feynman-Kac propagators by employing the Howland semigroup,

Stf(τ, x) = Y (τ, min(τ + t, T ))f(min(τ + t, T ))(x),

associated with the free backward propagator Y and similar semigroups associated
with the backward Feynman-Kac propagators YV and Yµ. In probabilistic terms,
this amounts to replacing the process Xt by the space-time process X̂t = (t, Xt)
associated with Xt and considering functions f(t, x) where (t, x) ∈ [0, T ] × E.
However, this approach to the inheritance problem for propagators often fails. The
reason for this failure is that additional restrictions on the time-behavior of the free
backward propagator Y are needed if we would like to apply the results obtained in
[6] to Howland semigroups. These restrictions are not imposed in the inheritance
theorems for backward Feynman-Kac propagators in the present section and in
Section 7.

Our first results in this section concern the behavior of the backward Feynman-
Kac propagators YV and Yµ on the scale of Lebesgue spaces Lr with respect to the
reference measure m. By Lr

E is denoted the space of all Borel functions from Lr.

Theorem 6.1. (a) Let P ∈ M. Then for any V ∈ P∗
f , YV is a backward propaga-

tor on L∞
E .

(b) Suppose that P ∈ M has a density p, and let V ∈ P∗
f . Then YV is a backward

propagator on L∞.
(c) Suppose that P ∈ M has a density p, and let µ ∈ P∗

m. Then Yµ is a backward
propagator on L∞.

The proof of Theorem 6.1 is a standard application of Khas′minski’s Lemma and
the propagator properties.

Remark 6.2. The following estimate holds in part (b) of Theorem 6.1:

||YV (τ, t)||∞→∞ ≤ exp{A([
t − τ

δ
] + 1)},

where δ > 0 is any number such that ρ(δ) = sup{M(|V |)(η, λ) : λ− η < δ} < 1 and
A = ln 1

1−ρ(δ) . Similar estimates hold in parts (a) and (c).

Our next result explains why the approximation in the potential sense is useful
in the theory of Feynman-Kac propagators.

Theorem 6.3. Let P ∈ M, and let V ∈ P∗
f and Vk ∈ P∗

f be such that Vk approaches
V in the potential sense. Then

lim
k→∞

sup
(τ,t)∈DT

||YV (τ, t) − YVk
(τ, t)||L∞

E →L∞
E

= 0.

Suppose that P ∈ M has a density p, and let µ ∈ P∗
m and µk ∈ P∗

m be such that
µk approaches µ in the potential sense. Then

lim
k→∞

sup
(τ,t)∈DT

||Yµ(τ, t) − Yµk
(τ, t)||∞→∞ = 0.
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Proof. We will only prove the second part of Theorem 6.3. The proof of the first
part is similar. Let µ and µk be such as in the formulation of Theorem 6.3, and let
f ∈ L∞. Then by part (b) of Lemma 5.3 with q = 1 and r = 2, there exists δ0 > 0
such that

|Yµ(τ, t)f(x)− Yµk
(τ, t)f(x)|

≤ α||f ||∞({M(µ − µk)(τ, t)} 1
2 + M(µ − µk)(τ, t))(54)

for all τ and t with t − τ < δ0 and all x ∈ E. In (54), the constant α does not
depend on x, t, τ , and k. It follows from (54) that

(55) lim
k→∞

sup
(τ,t)∈DT :t−τ<δ0

||Yµ(τ, t) − Yµk
(τ, t)||L∞→L∞

E
= 0.

Next, we will get rid of the restriction t−τ < δ0 in formula (55). Consider a partition
0 = t0 < t1 < t2 < · · · < tn = T of the interval [0, T ] such that tj+1 − tj < δ0 for
all j with 0 ≤ j ≤ n − 1. Then estimate (54) holds provided that t and τ belong
to the same interval [tj , tj+1]. Using this fact and the properties of backward
propagators, we can finish the proof of the second part of Theorem 6.3. We will
illustrate how to do it by considering a special case where tj ≤ τ ≤ tj+1 ≤ t ≤ tj+2

with 0 ≤ j ≤ n − 2. The general case is similar. By the uniform boundedness of
the propagators Yµk

on the space L∞ (this follows from Remark 6.2),

||Yµ(τ, t) − Yµk
(τ, t)||∞→∞

≤ ||Yµ(τ, tj+1)Yµ(tj+1, t) − Yµk
(τ, tj+1)Yµk

(tj+1, t)||∞→∞

≤ ||Yµ(τ, tj+1)Yµ(tj+1, t) − Yµ(τ, tj+1)Yµk
(tj+1, t)||∞→∞

+ ||Yµ(τ, tj+1)Yµk
(tj+1, t) − Yµk

(τ, tj+1)Yµk
(tj+1, t)||∞→∞

≤ α||Yµ(tj+1, t) − Yµk
(tj+1, t)||∞→∞

+ α||Yµ(τ, tj+1) − Yµk
(τ, tj+1)||∞→∞.(56)

Let us recall that t − tj+1 < δ0 and tj+1 − τ < δ0. Taking into account (55) and
(56), we see that an equality similar to (55) holds in the case where tj ≤ τ ≤ tj+1 ≤
t ≤ tj+2 with 0 ≤ j ≤ n − 2.

This completes the proof of Theorem 6.3. �

Corollary 6.4. Let P ∈ M, V ∈ P∗
f , and define gk by (18). Then

lim
k→∞

sup
(τ,t)∈DT

||YV (τ, t) − Ygk
(τ, t)||L∞

E →L∞
E

= 0.

Suppose that P ∈ M has a density p, and let µ ∈ P∗
m. Define a sequence of

functions gk by (21). Then

lim
k→∞

sup
(τ,t)∈DT

||Yµ(τ, t) − Ygk
(τ, t)||∞→∞ = 0.

Corollary 6.4 follows from Theorem 6.3 and from the fact that the sequence gk

defined by (18) approaches V in the potential sense, and the sequence gk defined
by (21) approaches µ in the potential sense (see Lemma 4.1).

The next lemma will be important in the sequel.

Lemma 6.5. (a) Let P ∈ M. Then for any V ∈ P∗
f , we have

(57) lim
t−τ→0+

||YV (τ, t) − Y (τ, t)||L∞
E →L∞

E
= 0.
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(b) Suppose that P ∈ M has a density p. Then for any V ∈ P∗
f ,

(58) lim
t−τ→0+

||YV (τ, t) − Y (τ, t)||∞→∞ = 0.

(c) Suppose that P ∈ M has a density p. Then for any µ ∈ P∗
m,

(59) lim
t−τ→0

||Yµ(τ, t) − Y (τ, t)||∞→∞ = 0.

Proof. It follows from part (a) of Lemma 5.1 and from the definition of the class
P∗

f that

lim sup
t−τ→0+

||YV (τ, t) − Y (τ, t)||∞→∞ ≤ lim sup
t−τ→0+

sup
x∈E

(Eτ,x exp{A|V |(τ, t)} − 1)

≤ lim sup
t−τ→0+

sup
x∈E

M(|V |)(τ, t)
1 − M(|V |)(τ, t)

= 0.

This gives equality (58). The proof of (57) and (59) is similar. We use part (b) of
Lemma 5.1 in the proof of (59). �

The next result provides sufficient conditions for the existence of backward
Feynman-Kac propagators on the space Ls.

Theorem 6.6. Let 1 < s < ∞ and 1 ≤ r < s. Then the following are true:
(a) Let P ∈ M and V ∈ P∗

f . Suppose that the free backward propagator Y satisfies
Y (τ, t) ∈ L(Lr

E , Lr
E) for all (τ, t) ∈ DT . Then YV is a backward propagator on Ls

E .
If, in addition, Y is uniformly bounded on Lr

E and strongly continuous on Ls
E , then

YV is a strongly continuous backward propagator on Ls
E .

(b) If P ∈ M has a density p, and if Y (τ, t) ∈ L(Lr, Lr) for all (τ, t) ∈ DT , then YV

is a backward propagator on Ls. If, in addition, Y is uniformly bounded on Lr and
strongly continuous on Ls, then YV is a strongly continuous backward propagator
on Ls.
(c) Suppose that P ∈ M has a density p and let µ ∈ P∗

m. If Y (τ, t) ∈ L(Lr, Lr)
for all 0 ≤ τ < t ≤ T , then Yµ is a backward propagator on Ls. If, in addition, Y
is uniformly bounded on Lr and strongly continuous on Ls, then Yµ is a strongly
continuous backward propagator on Ls.

Remark 6.7. We do not know whether Theorem 6.6 holds for r = s. In the case of
the heat semigroup, Theorem 6.6 may fail for s = 1. This was established in [21].

Proof of Theorem 6.6. Part (b). Assume that the conditions in part (b) of Theorem
6.6 hold, and let g ∈ Ls. It follows from Hölder’s inequality and Remark 6.2 that

(60) |YV (τ, t)g(x)| ≤ c{Y (τ, t)|g| s
r (x)} r

s ,

where c ≥ 1 depends on s, r, and V . Now we see that (60) implies

(61) ||YV (τ, t)||s→s ≤ c||Y (τ, t)||
r
s
r→r.

Therefore, YV is a propagator on Ls. The proofs of the corresponding assertions in
parts (a) and (c) are similar. �

Remark 6.8. Inequality (61) provides a norm estimate for the backward propagator
YV .
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Let us return to the proof of part (b) of Theorem 6.6. We will need the following
lemma:

Lemma 6.9. Let 1 < s < ∞ and 1 ≤ r < s. Then the following are true:
(a) Let P ∈ M and V ∈ P∗

f . Suppose that the free backward propagator Y is
uniformly bounded on Lr

E . Then we have

(62) lim
t−τ→0+

||YV (τ, t) − Y (τ, t)||Ls
E→Ls

E
= 0.

(b) If P ∈ M has a density p, V ∈ P∗
f , and Y is uniformly bounded on Lr, then

(63) lim
t−τ→0+

||YV (τ, t) − Y (τ, t)||s→s = 0.

(c) If P ∈ M has a density p, µ ∈ P∗
m, and Y is uniformly bounded on Lr, then

(64) lim
t−τ→0+

||Yµ(τ, t) − Y (τ, t)||s→s = 0.

Remark 6.10. Lemmas 6.5 and 6.9 were obtained in [17, 21] in the case of the
heat semigroup. A similar result concerning time-independent perturbations of
semigroups on L1 was obtained earlier in [32, Lemma 4.2].

Proof of Lemma 6.9. We begin with the proof of part (b) of Lemma 6.9. It follows
from part (b) of Theorem 6.6 that Y and YV are backward propagators on Ls. Let
g ∈ Ls. Then, using Hölder’s inequality and inequality (47), we obtain

|YV (τ, t)g(x)− Y (τ, t)g(x)|
≤ {Eτ,x|g(Xt)|

s
r } r

s {Eτ,x| exp{AV (τ, t)} − 1| s
s−r }

s−r
s

≤ {Y (τ, t)|g| s
r (x)} r

s {Eτ,x exp{ s

s − r
A|V |(τ, t)} − 1} s−r

s .(65)

It follows from part (a) of Lemma 5.1, the definition of the class P∗
f , the uniform

boundedness of Y on Lr, and estimate (65) that

lim sup
t−τ→0+

||YV (τ, t) − Y (τ, t)||s→s

≤ a(s, r, V ) lim sup
t−τ→0+

sup
x∈Rn

{Eτ,x exp{ s

s − r
A|V |(τ, t)} − 1}

s−r
s

≤ c(s, r, V ) lim sup
t−τ→0+

[
s

s−rM(|V |)(τ, t)
1 − s

s−rM(|V |)(τ, t)
]

s−r
s = 0.

This gives equality (63). The proof of equality (62) is similar. In the proof of
equality (64), we use part (b) of Lemma 5.1, instead of part (a) of Lemma 5.1.

Let us continue the proof of part (b) of Theorem 6.6. Suppose that Y is locally
uniformly bounded on Lr and strongly continuous on Ls. We have already shown
that YV is a backward propagator on Ls. Moreover, YV is uniformly bounded on
Ls (see estimate (61)). Therefore, in order to prove the strong continuity of YV it
suffices to show that YV is separately strongly continuous (see Theorem 2.2).

Let (τ, t) ∈ DT , and suppose that t′ ≥ t and g ∈ Ls. Then

||YV (τ, t′)g − YV (τ, t)g||s = ||YV (τ, t)(YV (t, t′)g − g)||s
≤ M ||YV (t, t′)g − g||s
≤ M ||g||s||YV (t, t′) − Y (t, t′)||s→s + M ||Y (t, t′)g − g||s.
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It follows from Lemma 6.9 and from the strong continuity of Y that

(66) lim
t′→t+

||YV (τ, t′)g − YV (τ, t)g||s = 0.

Similarly, we get

(67) lim
t′→t−

||YV (τ, t′)g − YV (τ, t)g||s = 0.

Now assume that τ ′ ≤ τ . Then

||YV (τ ′, t)g − YV (τ, t)g||s = ||(YV (τ, τ ′) − I)YV (τ, t)g||s
≤ ||YV (τ ′, τ ) − Y (τ ′, τ )||s→s||YV (τ, t)g||s

+||Y (τ ′, τ )YV (τ, t)g − YV (τ, t)g||s.

Using (61), Lemma 6.9, and the strong continuity of Y , we see that

(68) lim
τ ′→τ−

||YV (τ ′, t)g − YV (τ, t)g||s = 0.

Finally, let τ < τ ′ < t, and let λ be such that τ ′ < λ < t. Then

||YV (τ ′, t)g − YV (τ, t)g||s = ||(YV (τ ′, λ) − YV (τ, λ))YV (λ, t)g||s
≤ ||(Y (τ ′, λ) − Y (τ, λ))YV (λ, t)g||s

+ ||YV (τ ′, λ) − Y (τ ′, λ)||s→s||YV (λ, t)g||s
+ ||YV (τ, λ) − Y (τ, λ)||s→s||YV (λ, t)g||s

≤ ||(Y (τ ′, λ) − Y (τ, λ))YV (λ, t)g||s
+ M ||YV (τ ′, λ) − Y (τ ′, λ)||s→s||g||s
+ M ||YV (τ, λ)− Y (τ, λ)||s→s||g||s

= I1 + I2 + I3.(69)

For every ε > 0, fix λ such that τ < λ < t and I2 +I3 ≤ ε
2 for all τ ′ with τ < τ ′ < λ.

This can be done using Lemma 6.9. It is not hard to see that the strong continuity of
Y implies the existence of δ > 0 such that I1 ≤ ε

2 for all τ ′ with τ < τ ′ ≤ τ +δ < λ.
Therefore, (69) gives

(70) lim
τ ′→τ+

||YV (τ ′, t)g − YV (τ, t)g||s = 0,

and it follows from (66), (67), (68), and (70) that YV is separately strongly contin-
uous.

This completes the proof of Theorem 6.6. �

The next result concerns the smoothing properties of backward Feynman-Kac
propagators.

Theorem 6.11. Let 1 < s < q ≤ ∞ and 1 ≤ r < s. Then the following are true:
(a) Let P ∈ M and V ∈ P∗

f . Suppose that Y (τ, t) ∈ L(Lr
E , L

rq
s

E ) for all 0 ≤ τ <

t ≤ T . Then YV (τ, t) ∈ L(Ls
E , Lq

E) for all 0 ≤ τ < t ≤ T .
(b) If P ∈ M has a density p, V ∈ P∗

f , and Y (τ, t) ∈ L(Lr, L
rq
s ) for all 0 ≤ τ <

t ≤ T , then YV (τ, t) ∈ L(Ls, Lq).
(c) If P ∈ M has a density p, µ ∈ P∗

m, and Y (τ, t) ∈ L(Lr, L
rq
s ) for all 0 ≤ τ <

t ≤ T , then Yµ(τ, t) ∈ L(Ls, Lq).
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Proof. We will prove part (b) in the case q �= ∞. The proof in the case q = ∞ is
similar.

Let g ∈ Ls. Using estimate (60), we get

||YV (τ, t)g||q ≤ c{
∫

E

{Y (τ, t)|g| s
r (x)}

rq
s dx}

1
q .

It follows from the assumptions in Theorem 6.11 that

(71) ||YV (τ, t)g||q ≤ c||Y (τ, t)||
r
s

r→ rq
s
||g||s.

Now it is clear that part (b) of Theorem 6.11 follows from (71). The proofs of parts
(a) and (c) are similar. �

7. Feller, Feller-Dynkin, and BUC-property of backward

Feynman-Kac propagators

In this section we turn our attention to the behavior of the free backward prop-
agator Y and the backward Feynman-Kac propagators YV and Yµ on spaces of
continuous functions on E. By BC is denoted the space of all bounded continuous
functions on E equipped with the norm ||f ||C = supx∈E |f(x)|. The symbol C0

stands for the space of all continuous functions on E vanishing at infinity, and by
BUC is denoted the space of all bounded uniformly continuous functions on E. It
is known that C0 is a closed subspace of BUC, and BUC is a closed subspace of
BC.

Definition 7.1. A backward BC-propagator is called a backward Feller propaga-
tor. A backward C0-propagator is called a backward Feller-Dynkin propagator. If a
backward L∞

E -propagator Q is such that Q(τ, t) ∈ L(L∞
E , BC) for all 0 ≤ τ < t ≤ T ,

then it is said that Q satisfies the strong Feller condition. If a backward L∞
E -

propagator Q is such that Q(τ, t) ∈ L(L∞
E , BUC) for all 0 ≤ τ < t ≤ T , then it is

said that Q satisfies the strong BUC-condition.

Remark 7.2. If Q is a backward L∞-propagator, then we may replace the space L∞
E

by the space L∞ in the definition of the strong Feller and the strong BUC-condition.

Theorem 7.3. Let P ∈ M and V ∈ P∗
f . Then the following assertions hold:

(a) If Y satisfies the strong Feller condition, then YV also satisfies the same con-
dition.
(b) If Y satisfies the strong BUC-condition, then YV also satisfies the same condi-
tion.

We do not know whether Theorem 7.3 holds for backward Feller, Feller-Dynkin,
or BUC propagators. However, this is true under additional restrictions.

Theorem 7.4. Let P ∈ M, V ∈ P∗
f , and suppose that Y satisfies the strong Feller

condition. Then the following assertions hold:
(a) If Y is a backward Feller-Dynkin propagator, then YV also has the same prop-
erty.
(b) If Y is a strongly continuous backward Feller-Dynkin propagator, then YV also
has the same property.
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If Y satisfies the strong BUC-condition, then part (b) of Theorem 7.3 implies
that YV is a backward BUC-propagator. Moreover, the following theorem holds:

Theorem 7.5. Let P ∈ M, V ∈ P∗
f , and suppose that Y satisfies the strong

BUC-condition. If Y is a strongly continuous backward BUC-propagator, then YV

possesses the same property.

Proof of Theorem 7.3. We will prove part (a) of Theorem 7.3. The proof of Part
(b) is similar. �

Lemma 7.6. (a) Let P ∈ M and V ∈ P∗
f . Then for all x, x′ ∈ E, 0 ≤ τ < t ≤ T ,

g ∈ L∞
E , and λ > 0 with τ + λ < t,

(72) |YV (τ, t)g(x′) − YV (τ, t)g(x)|
≤ 2||YV (τ, τ + λ) − Y (τ, τ + λ)||∞→∞||YV (τ + λ, t)g||∞

+ |Y (τ, τ + λ)YV (τ + λ, t)g(x′) − Y (τ, τ + λ)YV (τ + λ, t)g(x)|.
(b) Suppose that P ∈ M has a density p. Then (72) holds for all g ∈ L∞.
(c) Suppose that P ∈ M has a density p. If µ ∈ P∗

m, then for every x, x′ ∈ E,
0 ≤ τ < t ≤ T , g ∈ L∞, and λ > 0 with τ + λ < t,

|Yµ(τ, t)g(x′) − Yµ(τ, t)g(x)|
≤ 2||Yµ(τ, τ + λ) − Y (τ, τ + λ)||∞→∞||Yµ(τ + λ, t)g||∞

+ |Y (τ, τ + λ)Yµ(τ + λ, t)g(x′) − Y (τ, τ + λ)Yµ(τ + λ, t)g(x)|.

Proof of Lemma 7.6. We will prove part (a) of Lemma 7.6. The proofs of parts (b)
and (c) are similar. We have

|YV (τ, t)g(x′) − YV (τ, t)g(x)|
= |YV (τ, τ + λ)YV (τ + λ, t)g(x′) − YV (τ, τ + λ)YV (τ + λ, t)g(x)|
≤ |YV (τ, τ + λ)YV (τ + λ, t)g(x′) − Y (τ, τ + λ)YV (τ + λ, t)g(x′)|

+ |Y (τ, τ + λ)YV (τ + λ, t)g(x′) − Y (τ, τ + λ)YV (τ + λ, t)g(x)|
+ |YV (τ, τ + λ)YV (τ + λ, t)g(x) − Y (τ, τ + λ)YV (τ + λ, t)g(x)|

≤ 2||YV (τ, τ + λ) − Y (τ, τ + λ)||∞→∞||YV (τ + λ, t)g||∞
+ |Y (τ, τ + λ)YV (τ + λ, t)g(x′) − Y (τ, τ + λ)YV (τ + λ, t)g(x)|.

This completes the proof of Lemma 7.6. �

Let us go back to the proof of part (a) of Theorem 7.3. Suppose that the
conditions in part (a) of Theorem 7.3 hold, and let g ∈ L∞

E . Since YV is a uniformly
bounded backward L∞

E -propagator (see Remark 6.2), we have

(73) ||YV (τ, t)||∞→∞ < M

for all (τ, t) ∈ DT . It follows from (73) and Lemma 6.9 that for every ε > 0 there
exists λ > 0 such that τ + λ < t and

(74) 2||YV (τ, τ + λ) − Y (τ, τ + λ)||∞→∞||YV (τ + λ, t)g||∞ <
ε

2
.

Moreover, for λ such as above and any fixed x ∈ E there exists δ > 0 such that

(75) |Y (τ, τ + λ)YV (τ + λ, t)g(x′) − Y (τ, τ + λ)YV (τ + λ, t)g(x)| <
ε

2
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for all x′ such that ρ(x′, x) < δ. This follows from (73) and the assumption that
Y is a backward strong Feller propagator. Now it is easy to see that part (a) of
Theorem 7.3 can be obtained from (74), (75), and Lemma 7.6.

This completes the proof of Theorem 7.3.

Proof of Theorem 7.4. (a) Let g ∈ C0. Then YV (τ, t)g ∈ BC for all (τ, t) ∈ DT , by
part (a) of Theorem 7.3.

For every ε > 0 there exists a compact set Kε such that |g(x)| < ε for all
x ∈ E\Kε. Moreover, Urysohn’s Lemma implies that there exists a continuous
function gε on E with compact support such that gε(x) = 1 for x ∈ Kε. It follows
that

|YV (τ, t)g(x)| ≤ |YV (τ, t)ggε(x)| + |YV (τ, t)g(1 − gε)(x)|
≤ cτ,t[{Y (τ, t)|ggε|2(x)} 1

2 + ε].

It is clear that this implies part (a) of Theorem 7.4.
(b) Let Y be a strongly continuous Feller-Dynkin propagator. By part (a) of

Theorem 7.4, YV is a Feller-Dynkin propagator. Arguing as in the proof of the
strong continuity of YV in the space Ls in Theorem 6.6 and using the C-norm
instead of the Ls-norm, we see that YV is strongly continuous on C0. �

Proof of Theorem 7.5. It is clear that YV is a backward BUC-propagator (see The-
orem 7.3). Now we can obtain the strong continuity of YV on the space BUC,
reasoning as in the proof of the strong continuity of YV on the space Ls in Theorem
6.6 and using the C-norm instead of the Ls-norm. �

The next theorem provides sufficient conditions for the continuity of the function
(τ, x) → YV (τ, t)g(x) on the set [0, t) × E. By ξ is denoted the topology on the
space BC generated by the uniform convergence of functions on compact subsets
of the space E.

Theorem 7.7. Let P ∈ M, and suppose that Y satisfies the following conditions:
(i) Y is a backward strong Feller propagator.
(ii) For every function h ∈ BC such that h = YV (r, s)g with 0 ≤ r < s ≤ T

and g ∈ BC, the mapping (u, v) �→ Y (u, v)h of the space {(u, v) : 0 ≤ u
≤ v ≤ T} into the space (BC, ξ) is continuous.

Then for any V ∈ P∗
f , t ∈ (0, T ], and g ∈ L∞

E , the function (τ, x) �→ YV (τ, t)g(x) is
continuous on the space [0, t) × E.

Proof. Suppose that the conditions in Theorem 7.7 hold. Using part (a) of Theorem
7.3, we see that YV is a backward strong Feller propagator. Given t ∈ (0, T ] and
g ∈ L∞

E , fix x ∈ E and τ with 0 ≤ τ < t. Suppose that τ ′ is close to τ and
x′ ∈ U(x), where U(x) is a relatively compact neighborhood of x. Then we have

|YV (τ ′, t) g (x′) − YV (τ, t)g(x)|
≤ |YV (τ ′, t) g (x′) − YV (τ, t)g (x′)| + |YV (τ, t)g (x′) − YV (τ, t)g(x)|
= J1 + J2.(76)

Since YV is a backward strong Feller propagator,

(77) lim
x′→x

J2 = 0.
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Next, we will estimate the quantity sup
x′∈U(x)

J1. Let us first suppose that τ ′ < τ .

Then we have

sup
x′∈U(x)

J1 ≤ sup
x′∈U(x)

|(YV (τ ′, τ ) − I)YV (τ, t)g (x′)|

≤ sup
x′∈U(x)

|(YV (τ ′, τ ) − Y (τ ′, τ ))YV (τ, t)g (x′)|

+ sup
x′∈U(x)

|(Y (τ ′, τ ) − I) YV (τ, t)g (x′)|

≤ M |YV (τ ′, τ ) − Y (τ ′, τ )|∞→∞ |g|∞
+ sup

x′∈U(x)

|(Y (τ ′, τ ) − I) YV (τ, t)g (x′)| .(78)

Put h = YV (τ, t)g. Then for any small ε > 0 we have

h = YV (τ, t − ε)YV (t − ε, t)g = YV (τ, t − ε)h1.

Since condition (ii) in Theorem 7.7 holds, the function h1 belongs to the space BC.
It follows from (78), condition (ii) in Theorem 7.7, and Lemma 6.5 that

(79) lim
τ ′↑τ

sup
x′∈U(x)

J1 = 0.

Next, suppose that τ < τ ′. Then for every λ with τ ′ < λ < t,

sup
x′∈U(x)

J1 ≤ sup
x′∈U(x)

|(YV (τ ′, λ) − YV (τ, λ)) YV (λ, t)g (x′)|

≤ sup
x′∈U(x)

|(YV (τ ′, λ) − Y (τ ′, λ))YV (λ, t)g (x′)|

+ sup
x′∈U(x)

|(YV (τ, λ) − Y (τ, λ))YV (λ, t)g (x′)|

+ sup
x′∈U(x)

|(Y (τ ′, λ) − Y (τ, λ)) YV (λ, t)g (x′)|

≤ M |g|∞ |YV (τ ′, λ) − Y (τ ′, λ)|∞→∞
+ M |g|∞ |YV (τ, λ) − Y (τ, λ)|∞→∞
+ sup

x′∈U(x)

|(Y (τ ′, λ) − Y (τ, λ)) YV (λ, t)g (x′)|

= C1 + C2 + C3.(80)

Using Lemma 6.5, we see that the following statement holds: for every ε > 0 there
exists λ ∈ (τ, t) such that if τ < τ ′ < λ, then C1 + C2 < 1

2ε. Moreover,

(81) YV (λ, t)g = Y (λ, t − δ)YV (t − δ, t)g = Y (λ, t − δ)h,

where h ∈ BC. Now condition (ii) in Theorem 7.7 and (81) imply that there exists
η > 0 such that τ < τ ′ < τ + η < λ and C3 ≤ 1

2ε. Hence, (80) gives

(82) lim
τ ′↓τ

sup
x′∈U(x)

J1 = 0.

Now it is clear that Theorem 7.7 follows from (76), (77), (79), and (82). �

Corollary 7.8. Let P ∈ M, and suppose that Y is a backward strong Feller prop-
agator. Suppose also that for every g ∈ BC, the mapping (u, v) �→ Y (u, v)g of the
space {(u, v) : 0 ≤ u ≤ v ≤ T} into the space (BC, ξ) is continuous. Then for any
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V ∈ P∗
f , t ∈ (0, T ], and g ∈ L∞

E , the function (τ, x) → YV (τ, t)g(x) is continuous
on the set [0, t) × E.

Corollary 7.9. Let P ∈ M, and suppose that Y is a strongly continuous backward
BUC-propagator. Suppose also that Y possesses the strong BUC-property. Then
for any V ∈ P∗

f , t ∈ (0, T ], and g ∈ L∞
E , the function (τ, x) → YV (τ, t)g(x) is

continuous on the set [0, t) × E.

It is not hard to see that Corollaries 7.8 and 7.9 follow from Theorem 7.7. The
proof is left as an exercise for the reader.

Remark 7.10. If a transition probability function P ∈ M has a density p, then
Theorems 7.3–7.7 and Corollaries 7.8 and 7.9 hold for any time-dependent measure
µ from the class P∗

m. The proofs of these results for µ ∈ P∗
m are similar to the

proofs in the case V ∈ P∗
f .

8. Subclasses of the classes P∗
f and P∗

m

We do not know whether the Feller-Dynkin property or the BUC-property are
inherited by the backward Feynman-Kac propagators YV and Yµ with V ∈ P∗

f and
µ ∈ P∗

m from the backward free propagator Y . Note that Theorems 7.4 and 8.7
contain additional assumptions. It will be shown in this section that if V and µ
belong to appropriate subclasses of the classes P∗

f and P∗
m, then the Feller-Dynkin

property and the BUC-property are inherited.
The next lemma concerns the non-autonomous Dyson series. Such assertions are

standard, and we do not include the proof.

Lemma 8.1. (a) Let P ∈ M, V ∈ P∗
f , and g ∈ L∞

E . If t and τ are such that
M(|V |)(τ, t) < 1, then

YV (τ, t)g(x)− Y (τ, t)g(x) =
∑
k≥1

(−1)k

∫ t

τ

dt1

∫ t

t1

dt2 · · ·

∫ t

tk−1

Y (τ, t1)V (t1)Y (t1, t2)V (t2) · · ·Y (tk−1, tk)V (tk)Y (tk, t)g(x)dtk.(83)

(b) If P ∈ M has a density p, V ∈ P∗
f , g ∈ L∞, and (τ, t) ∈ DT is such that

M(|V |)(τ, t) < 1, then equality (83) holds.
(c) If P ∈ M has a density p, µ ∈ P∗

m, g ∈ L∞, and (τ, t) ∈ DT is such that
M(|µ|)(τ, t) < 1, then

Yµ(τ, t)g(x)− Y (τ, t)g(x) =
∑
k≥1

(−1)k

∫ t

τ

dt1

∫ t

t1

dt2 · · ·

∫ t

tk−1

Y (τ, t1)µ(t1)Y (t1, t2)µ(t2) · · ·Y (tk−1, tk)µ(tk)Y (tk, t)g(x)dtk.

Definition 8.2. The function classes P∗
f,c and P∗

f,u are defined as follows:

V ∈ P∗
f,c ⇐⇒ V ∈ P∗

f and N(V )(τ, t, ·) ∈ BC for all (τ, t) ∈ DT ,

V ∈ P∗
f,u ⇐⇒ V ∈ P∗

f and N(V )(τ, t, ·) ∈ BUC for all (τ, t) ∈ DT .
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Definition 8.3. The class D∗
f,c is defined as follows: A function V ∈ P∗

f belongs
to this class if there exists a sequence Vk ∈ P∗

f such that Vk(t, ·) ∈ BC for all
k ≥ 1 and 0 ≤ t ≤ T , the sequence Vk approaches V in the potential sense and∫ T

0
||Vk(t)||Cdt < ∞ for all k ≥ 1. The class D∗

f,u is defined similarly. Here the
following restrictions are imposed: Vk(t, ·) ∈ BUC for all k ≥ 1 and 0 ≤ t ≤ T , the
sequence Vk approaches V in the potential sense and

∫ T

0
||Vk(t)||Cdt < ∞ for all

k ≥ 1.

Remark 8.4. If P has a density p, then the classes of time-dependent measures
P∗

m,c, P∗
m,u, D∗

m,c, and D∗
m,u can be defined similarly.

Lemma 8.5. The following assertions hold:
1. P∗

f,c ⊂ D∗
f,c and P∗

m,c ⊂ D∗
m,c.

2. P∗
f,u ⊂ D∗

f,u and P∗
m,u ⊂ D∗

m,u.
3. If V ∈ P∗

f , and there exists a sequence Vk ∈ P∗
f,c such that Vk approaches V in

the potential sense, then V ∈ P∗
f,c. Similarly, if µ ∈ P∗

m, and there exists a sequence
Vk ∈ P∗

f,c such that Vk approaches V in the potential sense, then µ ∈ P∗
m,c.

4. If V ∈ P∗
f , and there exists a sequence Vk ∈ P∗

f,u such that Vk approaches V in
the potential sense, then V ∈ P∗

f,u. Similarly, if µ ∈ P∗
m, and there exists a sequence

Vk ∈ P∗
f,u such that Vk approaches V in the potential sense, then µ ∈ P∗

m,u.

Proof. Part 1. Let V ∈ P∗
f,c, and let gk be the sequence defined by (18). Then we

have gk(t, ·) ∈ BC for all k ≥ 1 and 0 ≤ t ≤ T . Moreover, gk approaches V in the
potential sense (see Lemma 4.1). It remains to prove that

(84)
∫ T

0

||gk(t)||Cdt < ∞

for all k ≥ 1. We have∫ T

0

||gk(t)||Cdt ≤ k

∫ T

0

sup
x∈E

N(|V |)(τ, min(τ +
1
k

, T ), x)dt < ∞,

since V ∈ P∗
f . This establishes (84).

The proof of part 1 of Lemma 8.5 is thus completed. The proof for the measures
and also that of part 2 of Lemma 8.5 is similar.

Part 3. Let V ∈ P∗
f , and assume that there exists a sequence Vk ∈ P∗

f,c such
that Vk approaches V in the potential sense. Using Definition 8.2 and Lemma 4.1,
we see that V ∈ P∗

f,c. The proof for the measures and that of part 4 of Lemma 8.5
is similar.

This completes the proof of Lemma 8.5. �
The next assertions concern the inheritance of the Feller, the Feller-Dynkin, and

the BUC-properties.

Theorem 8.6. Let P ∈ M and V ∈ D∗
f,c. Then the following assertions hold:

(a) If Y is a backward Feller propagator, then YV has the same property.
(b) If Y is a backward Feller-Dynkin propagator, then YV has the same property.
If, in addition, Y is strongly continuous on C0, then YV is also strongly continuous
on C0.

Theorem 8.7. Let P ∈ M and V ∈ D∗
f,u. If Y is a backward BUC-propagator,

then YV has the same property. If, in addition, Y is strongly continuous on BUC,
then YV is also strongly continuous on BUC.
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Remark 8.8. Theorem 8.6 (Theorem 8.7) holds for a time-dependent measure µ ∈
D∗

m,c (µ ∈ D∗
m,u), provided that P ∈ M has a density p.

Proof of Theorems 8.6 and 8.7. We start with the proof of the inheritance of the
Feller-Dynkin property in part (b) of Theorem 8.6. Let V ∈ D∗

f,c, g ∈ C0, and
let Vk ∈ P∗

f be a sequence of functions such that Vk(t, ·) ∈ BC for all k ≥ 1 and
0 ≤ t ≤ T , and, moreover, Vk approaches V in the potential sense. Then using part
(a) of Lemma 4.1 and estimate (45) with q = 1 and r = 2, we get

||YV (τ, t)g − YVk
(τ, t)g||C

≤ ||g||C
1

(1 − M(2|V |)(τ, t))
1
2
{[2M(2|V − Vk|)(τ, t)M(2(V − Vk))(τ, t)]

1
2

+
2
√

3
3

M(2|V − Vk|)(τ, t)M(2(V − Vk))(τ, t)
1 − M(2|V − Vk|)(τ, t)

} 1
2(85)

for all k ≥ k0 and t − τ < δ, where δ > 0 is small and does not depend on k. It
follows from (85) and Definition 4.3 that for t − τ < δ, we have

(86) lim
k→∞

||YV (τ, t)g − YVk
(τ, t)g||C = 0.

Hence, it suffices to prove that the Feller-Dynkin property is inherited if a function

W ∈ P∗
f is such that W (t, ·) ∈ BC for all 0 ≤ t ≤ T and

∫ T

0

||W (t)||Cdt < ∞.

Indeed, suppose that the Feller-Dynkin property is inherited for such functions.
Let V ∈ D∗

f,c. Then using Definition 8.3 and our assumption, we see that for every
k ≥ 1, YVk

is a backward Feller-Dynkin propagator. It follows from (86) and from
the fact that C0 is a closed subspace of BC that YV (τ, t)g ∈ C0 for all g ∈ C0 and
t−τ < δ. Now the properties of backward propagators show that YV is a backward
Feller-Dynkin propagator. This establishes the inheritance of the Feller-Dynkin
property in part (b) of Theorem 8.6 for all V ∈ D∗

f,c.
Our final goal is to prove the inheritance of the Feller-Dynkin property in part (b)

of Theorem 8.6 for a function V ∈ P∗
f for which V (t, ·) ∈ BC for all 0 ≤ t ≤ T and∫ t

0

||V (t)||Cdt < ∞. Let g ∈ C0, and assume that Y is a backward Feller-Dynkin

propagator. Then using formula (83), we see that there exists δ < 0 such that

(87) YV (τ, t)g(x)− Y (τ, t)g(x)

=
∑
j≥1

(−1)j

∫ t

τ

dt1

∫ t

t1

dt2 · · ·
∫ t

tj−1

Y (τ, t1)V (t1)Y (t1, t2)V (t2)

· · ·Y (tj−1, tj)V (tj)Y (tj , t)g(x)dtj

for all τ and t with t − τ < δ. The family Y consists of contractions on L∞
E which

map the space C0 into itself. Moreover, the definition of the class P∗
f,c shows that

V (tk, ·) ∈ BC for every fixed t. The integrands in (87) are Borel functions of the
variables t1, . . . , tj and belong to the space C0 in the variable x. Our next goal is
to show that the integrals in (87) also belong to the space C0. This can be seen
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using the Dominated Convergence Theorem since

∫ t

τ

dt1

∫ t

t1

dt2 · · ·
∫ t

tj−1

sup
x∈E

Y (τ, t1)|V (t1)|Y (t1, t2)|V (t2)|

· · ·Y (tj−1, tj)|V (tj)|Y (tj , t)g(x)dtj

≤
∫ t

τ

dt1

∫ t

τ

dt2 · · ·
∫ t

τ

||V (t1)||C ||V (t2)||C · · · ||V (tj)||C ||g||dtj

= ||g||C(
∫ t

τ

||V (t)||Cdt)j < ∞.

It follows from the convergence of the series in (87) in the space BC and from the
fact that C0 is a closed subspace of BC that the function on the right-hand side
of (87) belongs to the space C0. By our assumption, we have Y (τ, t)g ∈ C0 for all
k ≥ k0 and t−τ < δ. Using the properties of backward propagators, we see that YV

is a backward Feller-Dynkin propagator. If, in addition, Y is a strongly continuous
backward propagator on C0, then we can prove the strong continuity of YV on C0

using the same methods as in the proof of part (b) of Theorem 6.6 with s = ∞.
This completes the proof of part (b) of Theorem 8.6. The proofs of part (a) and

that of Theorem 8.7 are similar. �

9. Examples

A rich source of transition probability densities is the theory of second order par-
abolic partial differential equations on Rn. It is known that under certain restric-
tions, fundamental solutions of such equations are transition probability densities.
Numerous results concerning the existence of fundamental solutions in the case of
equations with time-dependent coefficients can be found in [11, 12, 23, 29, 33]. In
the present section we will discuss what follows from the results obtained in Sections
6 and 7 for such transition probability densities.

Consider the following final value problem on Rn:

(88)
{

∂u
∂τ + Lu = 0, 0 ≤ τ < t ≤ T,
u(t) = f.

In (88), L stands for a differential operator given by

(89) L =
n∑

i,j=1

aij(τ, x)
∂2

∂xi∂xj
+

n∑
i=1

bi(τ, x)
∂

∂xi

(non-divergence form), or by

(90) Lu =
n∑

i,j=1

∂

∂xi
[aij(τ, x)

∂

∂xj
] +

n∑
i=1

bi(τ, x)
∂u

∂xi

(divergence form). Solutions to problem (88) with L in the divergence form are
understood in the weak sense.
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It is known that if L is as in formula (89), and if the following conditions hold:
(1) the functions aij and bi are bounded and measurable on [0, T ] × Rn,
(2) there exists a constant γ > 0 such that for all (τ, x) ∈ [0, T ] × Rn and any

collection of real numbers λ1, . . . , λn,
n∑

i,j=1

aij(τ, x)λiλj ≥ γ

n∑
i=1

λ2
i ,

(3) there exists a constant δ with 0 < δ ≤ 1 such that

n∑
i,j=1

|aij(τ1, x1) − aij(τ2, x2)| +
n∑

i=1

|bi(τ1, x1) − bi(τ2, x2)|

≤ C(|x1 − x2|δ + |τ1 − τ2|δ)

for all (τ1, x1), (τ2, x2) ∈ [0, T ] × Rn,
then there exists a unique fundamental solution p(τ, x; t, y) of the final value prob-
lem (88). The function p satisfies the following conditions: it is jointly continuous,
strictly positive, and the Gaussian estimates hold for p and its derivatives. For
f ∈ C∞

0 and t > 0, the function u(τ, x) =
∫

Rn f(y)p(τ, x; t, y)dy belongs to the
space C1,2

b ([0, t] × Rn) and satisfies (88) (see, e.g., [11, 12, 23, 33]). The funda-
mental solution p is simultaneously a transition probability density. It follows from
the upper Gaussian estimate for p that there exists a continuous Markov process
Xt with p as its transition density. It is not hard to prove that the backward
free propagator Y , associated with the density p, is (Lr − Lq)-smoothing for all
1 ≤ r ≤ q ≤ ∞ and possesses the strong Feller and the strong BUC-property.
Moreover, Y is a backward BC-propagator, a backward BUC-propagator, and a
backward Feller-Dynkin propagator. It is not hard to prove that Y is strongly
continuous on the spaces C0 and BUC. Here we need the following well-known
assertion concerning general transition probability densities:

Lemma 9.1. For every function f ∈ BUC and ε > 0, the following estimate holds:

||f −Y (τ, t)f ||C ≤ sup
x,y∈E:ρ(x,y)≤ε

|f(x)− f(y)|+ 2||f ||C sup
x∈E

∫
y:ρ(x,y)>ε

p(τ, x; t, y)dy.

We also employ the Gaussian estimates for p and Theorem 2.2 in the proof of
the strong continuity of Y on the C0 and BUC.

It follows from the properties of the backward propagator Y listed above that the
backward Feynman-Kac propagators YV and Yµ with V ∈ P∗

f and µ ∈ P∗
m satisfy

the conditions YV (τ, t) ∈ L(Lr, Lq) and Yµ(τ, t) ∈ L(Lr, Lq) for all (τ, t) ∈ DT

and 1 < r ≤ q ≤ ∞. Moreover, they possess the strong Feller and the strong
BUC-property and are strongly continuous backward Feller-Dynkin propagators
and strongly continuous backward BUC-propagators (see Theorems 6.1, 6.6, 6.11,
7.4, and 7.5).

Next, suppose that L is as in (90). A very general existence theorem for fun-
damental solutions was obtained in this case in [29] (see Theorem 1 in [29]). The
fundamental solution p(τ, x; t, y) of the final value problem (88) in [29] satisfies
the Gaussian estimates. Under the conditions in Theorem 1 in [29] the backward
free propagator Y satisfies the condition Y (τ, t) ∈ L(Lr, Lq) for all (τ, t) ∈ DT

and 1 ≤ r ≤ q ≤ ∞ (this can be shown using the upper Gaussian estimate for



TIME-DEPENDENT MEASURES AND FEYNMAN-KAC PROPAGATORS 4095

p). It follows from the upper Gaussian estimate and the continuity of p that the
strong Feller property also holds for Y . Moreover, Y is a strongly continuous Feller-
Dynkin propagator (this fact can be obtained from the strong Feller property, the
Gaussian estimate, and Lemma 9.1 using the ideas in the proof of part (b) of The-
orem 6.6). However, the validity of the strong BUC-property for Y is not clear.
Using the results obtained in Sections 6 and 7 of the present paper, we see that
the backward Feynman-Kac propagators YV and Yµ with V ∈ P∗

f and µ ∈ P∗
m

satisfy YV ∈ L(Lr, Lq) and Yµ ∈ L(Lr, Lq) for all (τ, t) ∈ DT and 1 < r ≤ q ≤ ∞.
They also possess the strong Feller property and are strongly continuous backward
Feller-Dynkin propagators.

10. Backward transition functions and forward propagators

In this section we discuss forward Feynman-Kac propagators. There is a simple
connection between the forward and backward cases which uses the idea of time
reversal. We will consider the case where T < ∞.

Suppose that P̃ (τ, A; t, y) satisfies the following conditions:
(1) For fixed τ , A, and t, P̃ is a non-negative Borel function on E.
(2) For fixed τ , t, and y, P̃ is a Borel measure on E .
(3) The normality condition, P̃ (τ, E; t, y) = 1, holds for all τ , t, and y.
(4) The Chapman-Kolmogorov equation,

P̃ (τ, A; t, y) =
∫

E

P̃ (τ, A; λ, x)P̃ (λ, dx; t, y),

holds for all τ < λ < t, A, and y.
Then P̃ is called a backward transition probability function.

The free propagator associated with P̃ is defined on the space L∞
E by{

U(t, τ )g(y) =
∫

E
g(x)P̃ (τ, dx; t, y)

U(t, t)f = f,

for all τ , t, and f ∈ L∞
E . If P̃ possesses density p̃, then{

U(t, τ )g(y) =
∫

E
g(x)p̃(τ, x; t, y)dx

U(t, t)f = f,

for all x ∈ E, 0 ≤ τ < t < ∞, and f ∈ L∞.
The time reversal η is the function η(t) = T − t where t ∈ [0, T ]. For a function

V on [0, T ] × E and a time-dependent measure µ, we put

η(V )(t, x) = (η(t), x) and η(µ)(t) = µ(η(t)).

One of the links between the forward and backward cases is as follows. If P̃ is a
backward transition probability function, then

(91) P (τ, x; t, A) = P̃ (η(t), A; η(τ ), x)

is a transition probability function. If (X,Fτ
t , Pτ,x) is a non-homogeneous progres-

sively measurable Markov process on (Ω,F) with transition probability function
P , then we can define a progressively measurable backward Markov process X̃ on
(Ω,F) by putting X̃t = Xη(t).

Suppose that a backward transition probability function P̃ is given. If V is a
Borel function on [0, T ]×E, then we will say that V belongs to the class Pf provided
that η(V ) ∈ P∗

f . Similarly, if P̃ possesses density p̃ and µ is a time-dependent
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measure, we will say that µ belongs to the class Pm provided that η(µ) ∈ P∗
m. The

potentials of the function V and the measure µ are defined by

Ñ(V )(t, τ, x) =
∫ t

τ

U(t, s)V (s)(x)ds

and

Ñ(µ)(t, τ, x) =
∫ t

τ

U(t, s)µ(s)(x)ds,

respectively. If P̃ possesses density p̃, then the additive functional Cµ corresponding
to a time-dependent measure µ ∈ Pm is given by

(92) Cµ(t, τ ) = Aη(µ)(T − t, T − τ ).

Here we should take into account the correspondence between P̃ and P , expressed
by (91), and use Theorem 4.6. Since η(µ) ∈ P∗

m, we only need the progressive
measurability of the process X (or equivalently, the progressive measurability of
the process X̃) in order for the right-hand side of (92) to be defined.

Let P̃ be a backward transition probability function, and suppose that the pro-
cess X̃ is progressively measurable. Then for any V ∈ Pf , the Feynman-Kac
propagator UV is defined on the space L∞

E by

UV (t, τ )g(y) = Eη(t),yg(Xη(τ)) exp{−
∫ t

τ

V (s, Xη(s))ds}.

Similarly, if P̃ possesses density p̃ and if the process X̂ is progressively measurable,
then the Feynman-Kac propagator Uµ is defined on the space L∞

E by

Uµ(t, τ )g(y) = Eη(t),yg(Xη(τ)) exp{−Cµ(t, τ )}.
It is not hard to see that all the results for backward Feynman-Kac propagators

obtained in the present paper can be reformulated for forward propagators using
time reversal. Here we assume that a backward transition probability function P̃
is given, and pass from the Kato classes P∗

f and P∗
m and the backward propagators

Y , YV , and Yµ to the classes Pf and Pm and the forward propagators U , UV , and
Uµ, respectively, taking into account formula (91).
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