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BLOW-UP IN FINITE TIME FOR THE DYADIC MODEL
OF THE NAVIER-STOKES EQUATIONS

ALEXEY CHESKIDOV

Abstract. We study the dyadic model of the Navier-Stokes equations intro-
duced by Katz and Pavlović. They showed a finite time blow-up in the case
where the dissipation degree α is less than 1/4. In this paper we prove the
existence of weak solutions for all α, energy inequality for every weak solu-
tion with nonnegative initial data starting from any time, local regularity for
α > 1/3, and global regularity for α ≥ 1/2. In addition, we prove a finite
time blow-up in the case where α < 1/3. It is remarkable that the model with
α = 1/3 enjoys the same estimates on the nonlinear term as the 4D Navier-
Stokes equations. Finally, we discuss a weak global attractor, which coincides
with a maximal bounded invariant set for all α and becomes a strong global
attractor for α ≥ 1/2.

1. Introduction

The regularity of the 3D incompressible Navier-Stokes equations (NSE) remains
a significant problem. This, among many other open problems connected with the
3D NSE, depends on the estimates on the inertial term (u · ∇)u in the equations.
In this paper we study a dyadic model, which has similar properties to the 3D NSE,
the same estimates on the inertial term, and the same open question concerning
the regularity of the solutions.

There have been many simple models proposed in the literature that capture
some essential features of the 3D NSE. Among these are shell models of turbulence,
which have been investigated for many years (see [2, 11, 12, 16, 18]). Recently, some
of these models, as well as some new ones, were extensively studied analytically.
In [7], Constantin, Levant, and Titi study the “sabra” shell model of turbulence,
proving a global regularity and the existence of a finite dimensional global attractor
and inertial manifold.

In [14], Katz and Pavlović introduced another shell-type model, the dyadic model
for the Euler and Navier-Stokes equations. This model, motivated by [13], is an
infinite system of nonlinear ODEs that describes evolutions of wavelet coefficients.
In [9], Friedlander and Pavlović proposed a three-dimensional vector model for the
Euler equations, similar to a quasi-linear approximation of the 3D Navier-Stokes
system constructed by Dinaburg and Sinai [8]. Both of these dyadic models can be
reduced to the following system of nonlinear ODEs:

(1.1)
d

dt
un + νλ2αnun − λnu2

n−1 + λn+1unun+1 = gn, n ∈ N,
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5102 ALEXEY CHESKIDOV

where u0 = 0. Here, λ > 1, ν ≥ 0 is the viscosity, and α > 0 is the dissipation
degree. Note that we also include a force g = (g1, g2, . . . ) in the model. For
u = (u1, u2, . . . ), the dyadic model can be written as

d

dt
u + νAu + B(u, u) = g,

where
(Au)n = λ2αnun, (B(u, u))n = −λnu2

n−1 + λn+1unun+1,

and u0 = 0. Note that for α = 2/5 the following are sharp estimates on the inertial
term:

|(B(u, u), Au)| � |Au|3/2|A1/2u|3/2,

where (·, ·) and | · | are the l2-inner product and norm respectively. The best known
estimates on the inertial term of the 3D NSE are the same, with (·, ·) and | · | being
the L2-inner product and norm.

Katz and Pavlović [14] proved that under certain assumptions on the initial
conditions, solutions of the inviscid dyadic model blow up in finite time in a norm
stronger than the l2-norm. Later, Waleffe [21] derived the inviscid dyadic model
from the Burgers equation reducing it to (1.1) with ν = 0. Recently, Kiselev and
Zlatoš [15] sharpened the blow-up result for the dyadic model and studied a very
similar Obukhov model (see [17]) proving a global regularity of every solution with
regular initial data. In addition, the existence of a global attractor of the inviscid
dyadic model is proved in [5]. This surprising fact is a result of a self-dissipation
mechanism due to the loss of regularity of solutions.

In this paper we will study the viscous dyadic model, i.e., the model (1.1) with
ν > 0. In this case Katz and Pavlović [14] obtained a finite time blow-up of solutions
with certain initial data when α < 1/4. Our main goal is to prove a finite time
blow-up in the case where α < 1/3. It is remarkable that in the critical case α = 1/3
the following are sharp estimates on the nonlinear term:

|(B(u, u), Au)| � |Au|2|A1/2u|.
Note that the best known estimates on the nonlinear term of the 4D NSE are
exactly the same.

This paper is structured as follows. We start with surveying the dyadic model
in Section 2. In Section 3 we introduce a functional setting and define weak and
strong solutions. In Section 4 we derive some a priori estimates and prove the
existence of weak solutions to the dyadic model. This is done by taking a limit of
the Galerkin approximation, which also results in the energy inequality for a limit
solution (which might not be unique) for almost all time. Then we show that the
lack of backward energy transfer implies that every weak solution with nonnegative
initial data satisfies the energy inequality starting from any time. Finally, using
a classical NSE technique, we show a local regularity for α > 1/3 and a global
regularity for α ≥ 1/2.

In Section 5, inverting the Sobolev-type estimates, we prove that every solution
with large Hε-norm blows up in finite time in the H1/3+ε-norm, ε > 0. Here,
the Hγ-norm is defined as ‖u‖γ = (

∑
λ2γnu2

n)1/2. Note that we also use such a
technique in [4], where we study a similar model that has coefficients growing as
power functions. That model is introduced as an example of an NSE-like dynamical
system that possesses a weak global attractor, on which all the solutions blow up
in finite time. The reason for the power-law growth for the coefficients is to mimic
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the growth of eigenvalues of the Stokes operator in 3D. It is remarkable that due
to a slower growth of the coefficients, the model in [4] still possesses a gap between
the regions of a local regularity and finite time blow-up.

Lastly, in Section 6 we discuss a weak global attractor for the dyadic model. The
weak global attractor is the minimal weakly closed weakly attracting set. Using
results from [3, 4], we show that the weak global attractor is also the maximal
bounded invariant set. Moreover, for α ≥ 1/2 all the trajectories are continuous in
l2, which implies that the weak global attractor is in fact a strongly compact strong
global attractor.

Note that there is still a gap between the regions of global regularity and blow-up
in finite time, which means that the developed technique is not sharp enough to
separate these two behaviors. Since most of the proofs in the theory of the Navier-
Stokes equations go through for the dyadic model, a better understanding of the
dyadic or similar shell models might provide insight into the regularity problem for
the Navier-Stokes equations.

2. Dyadic model

Here we recall a derivation of the dyadic model for the equations of fluid motion
by Katz and Pavlović [14]. A cube Q ⊂ R

3 is called dyadic if its side length is 2l,
and the corners are on the lattice 2l

Z
3, for some integer l. For a dyadic cube Q

with side length 2−j , its parent Q̃ is a unique dyadic cube with side length 2−j+1

that contains Q. For m ≥ 1, let Cm(Q) be the set of all mth order grandchildren
of Q, i.e., all the dyadic cubes with side length 2−j−m that are contained in Q. For
instance, C1(Q) consists of 23 children of Q.

Now a scalar-valued function u(x, t) can be represented by the following wavelet
expansion:

u(x, t) =
∑
Q

uQ(t)wQ(x),

where {wQ} is an orthonormal in L2(R) family of wavelets, such that wQ is localized
on Q. Define the Laplacian in the following way:

∆u =
∑
Q

22j(Q)uQ(t)ωQ(x),

where 2−j(Q) is a side length of a dyadic cube Q. Katz and Pavlović define the
cascade operator as follows:

(C(u, v))Q = −2
5j
2 uQ̃vQ̃ + 2

5(j+1)
2 uQ

∑
Q′∈C1(Q)

vQ′ ,

where Q is a dyadic cube with side length 2−j . The dyadic Navier-Stokes equation
with hypo-dissipation is written as

d

dt
u + C(u, u) + ν(∆)αu = 0,

where we include the viscosity ν, which is chosen to be one in [14]. In terms of the
wavelet coefficients uQ, this equation can be written as

d

dt
uQ(t) = −ν22αjuQ(t) + 2

5j
2 u2

Q̃
(t) − 2

5(j+1)
2 uQ

∑
Q′∈C1(Q)

uQ′(t).
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5104 ALEXEY CHESKIDOV

As was proposed in [21] in the case ν = 0, we simplify the model in the following
way. Let Q1 be a dyadic cube with side length 2−1. Let v1(t) = uQ1(t) and
vj(t) = uQj

(t), where Qj is some dyadic cube in Cj−1(Q1), j ≥ 2. We will only
consider the initial conditions for which uQ(t0) = vj(t0) for all cubes Q ∈ Cj−1(Q1)
for j ≥ 2, and uQ(t0) = 0 for all dyadic cubes with side length larger than 2−1.
Then, for every j ≥ 2, we have uQ(t) = vj(t) for all Q ∈ Cj−1(Q1). Now, denoting
v0 = 0, we obtain the following system of equations for vj(t):

d

dt
vj(t) = −ν22αjvj(t) + 2

5j
2 v2

j−1 − 232
5(j+1)

2 vjvj+1, j ≥ 1.

Finally, the change of variables

uj(t) = 2
3j
2 vj(t/8)

reduces the equations to

d

dt
uj = −ν̃22αjuj + 2ju2

j−1 − 2j+1ujuj+1, j ≥ 1,

with ν̃ = ν/8.

3. Functional setting

Let us denote H = l2 with the usual scalar product and norm:

(u, v) :=
∞∑

n=1

unvn, |u| :=
√

(u, u).

The norm |u| will be called the energy norm. Let A : D(A) → H be the Laplace
operator defined by

(Au)n = λ2αnun, n ≥ 1,

for some λ > 1. The domain D(A) of this operator is a dense subset of H. Note
that A is a positive definite operator whose eigenvalues are

0 < λ2α ≤ λ4α ≤ λ6α ≤ . . . .

Let Hγ = A−γ/(2α)H be endowed with the following scalar product and norm:

((u, v))γ :=
∞∑

n=1

λ2γnunvn, ‖u‖γ :=
√

((u, u))γ.

In the special case γ = α, let V = Hα = A−1/2H and

((u, v)) := ((u, v))α, ‖u‖ := ‖u‖α.

This double norm ‖u‖ will be called the enstrophy norm. Note that we have an
equivalent of the Poincaré inequality

|u|2 ≤ 1
λ2α

‖u‖2.

Also, let

ds(u, v) := |u − v|, dw(u, v) :=
∞∑

n=1

1
2(n2)

|un − vn|
1 + |un − vn|

, u, v ∈ H.
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Here, ds is a strong distance, and dw is a weak distance that induces a weak topology
on any bounded subset of H. Hence, a bounded sequence {uk} ⊂ H converges to
u ∈ H weakly, i.e.,

lim
k→∞

(uk, v) = (u, v), ∀v ∈ H,

if and only if
dw(uk, u) → 0 as k → ∞.

We also recall that if uk → u weakly in H as k → ∞, then

lim inf
k→∞

|uk| ≥ |u|.

Let
C([0, T ]; Hw) := {u(·) : [0, T ] → H, un(t) is continuous for all n}

be endowed with the distance

dC([0,T ];Hw)(u, v) = sup
t∈[0,T ]

dw(u(t), v(t)).

Also, let

C([0,∞); Hw) := {u(·) : [0,∞) → H, un(t) is continuous for all n}
be endowed with the distance

dC([0,∞);Hw)(u, v) =
∑
T∈N

1
2T

sup{dw(u(t), v(t)) : 0 ≤ t ≤ T}
1 + sup{dw(u(t), v(t)) : 0 ≤ t ≤ T} .

In this paper, the dyadic model of the Navier-Stokes equations will be written
as

(3.1)

⎧⎨⎩
d

dt
un + νλ2αnun − λnu2

n−1 + λn+1unun+1 = gn, n = 1, 2, 3 . . .

u0 = 0,

for some parameter λ > 1, the viscosity ν > 0, the dissipation degree α > 0, and
the force g = (g1, g2, . . . ). For simplicity, assume that g is independent of time,
g ∈ H, and gn ≥ 0 for all n.

For u = (u1, u2, . . . ), the dyadic model can be written in a more condensed form
as

(3.2)
d

dt
u + νAu + B(u, u) = g,

where

(B(u, v))n =
{

−λnun−1vn−1 + λn+1unvn+1, n = 2, 3, . . .
λ2u1v2, n = 1.

Clearly, the bilinear operator B enjoys the orthogonality property:

(B(u, v), v) =
∞∑

n=1

(
−λnun−1vn−1vn + λn+1unvn+1vn

)
=

∞∑
n=1

(−λnun−1vn−1vn + λnun−1vnvn−1)

= 0.

Note that we always use a convention that u0 = 0.
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Definition 3.1. A weak solution on [T,∞) (or (−∞,∞), if T = −∞) of (3.1) is
an H-valued function u(t) defined for t ∈ [T,∞), such that un ∈ C1([T,∞)) and
un(t) satisfies (3.1) for all n.

Note that since (B(u, u))n has a finite number of terms, the notions of a weak
solution and a classical solution (of a system of ODEs) coincide. Hence, the weak
solutions will often be called solutions in the remainder of the paper. Note that
if u(t) is a solution on [T,∞), then automatically un ∈ C∞([T,∞)). We say that
a solution u(t) is strong (or regular) on some interval [T1, T2] if ‖u(t)‖ is bounded
on [T1, T2]. A solution is strong on [T1,∞) if it is strong on every interval [T1, T2],
T2 ≥ T1.

Definition 3.2. A Leray-Hopf solution of (3.1) on the interval [T,∞) is a weak
solution of (3.1) on [T,∞) satisfying the energy inequality

(3.3) |u(t)|2 + 2ν

∫ t

t0

‖u(τ )‖2 dτ ≤ |u(t0)|2 + 2
∫ t

t0

(g, u(τ )) dτ

for all T ≤ t0 ≤ t, t0 a.e. in [T,∞). The set Ex on which the energy inequality
does not hold will be called the exceptional set.

Note that the complement of the exceptional set Ex coincides with the set of
points of strong continuity from the right. Later we will prove that every solution
u(t) with un(T ) ≥ 0 is a Leray-Hopf solution on [T,∞), and that the energy
inequality for such a solution is satisfied starting from any time t0 ≥ T , i.e., Ex = ∅.

4. A priori estimates and existence of weak and strong solutions

We start with some a priori estimates.
Energy estimates. Formally taking a scalar product of the equation (3.1) with
u, we obtain

1
2

d

dt
|u|2 ≤ −ν‖u‖2 + |g||u|

≤ −ν|u|2 +
ν

2
|u|2 +

|g|2
2ν

= −ν

2
|u|2 +

|g|2
2ν

.

Using Gronwall’s inequality, we conclude that

(4.1) |u(t)|2 ≤ e−νt|u(0)|2 +
|g|2
ν2

(1 − e−νt).

Hence, B = {u ∈ H : |u| ≤ R} is an absorbing ball for the Leray-Hopf solutions,
where R is any number larger than |g|/ν. Note that this result will later follow
rigorously from the energy inequality.

Next, taking a limit of the Galerkin approximation, we will prove the existence
of Leray-Hopf solutions to (3.1).

Theorem 4.1. For every u0 ∈ H and g ∈ H, there exists a solution u(t) of (3.1)
with u(0) = u0. Moreover, the energy inequality

|u(t)|2 + 2ν

∫ t

t0

‖u(τ )‖2 dτ ≤ |u(t0)|2 + 2
∫ t

t0

(g, u(τ )) dτ

holds for all 0 ≤ t0 ≤ t, t0 a.e. in [0,∞).
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Proof. Let u0 ∈ H. We will show the existence of a weak solution by taking a limit
of the Galerkin approximation uk(t) = (uk

1(t), . . . , uk
k(t), 0, 0, . . . ) with uk

n(0) = u0
n

for n = 1, 2, ..., k, which satisfies

(4.2)

⎧⎪⎨⎪⎩
d

dt
uk

n + νλ2αnuk
n − λn(uk

n−1)
2 + λn+1uk

nuk
n+1 = gn, n ≤ k − 1,

d

dt
uk

k + νλ2αkuk
k − λk(uk

k−1)
2 = gk,

where uk
0 = 0. First, note that the energy estimate (4.1) obviously holds for uk(t).

Hence, from the theory of ordinary differential equations we know that there exists
a unique solution uk(t) to (4.2) on [0,∞). Next, we will show that a sequence of
the Galerkin approximations {uk} is weakly equicontinuous. Indeed, thanks to the
energy estimate (4.1), there exists M such that

uk
n(t) ≤ M, ∀n, k, t ≥ 0.

Therefore,

|uk
n(t) − uk

n(s)| ≤
∣∣∣∣∫ t

s

(
−νλ2αnuk

n + λn(uk
n−1)

2 − λn+1uk
nuk

n+1 + gn

)
dτ

∣∣∣∣
≤ (νλ2αnM + λnM2 + λn+1M2 + gn)|t − s|,

for all n, k, t ≥ 0, s ≥ 0. Thus,

dw(uk(t), uk(s)) =
∞∑

n=1

1
2(n2)

|uk
n(t) − uk

n(s)|
1 + |uk

n(t) − uk
n(s)|

≤ c|t − s|,

for some constant c independent of k. Hence, {uk} is an equicontinuous sequence
of functions in C([0,∞); Hw) with bounded initial data. Therefore, the Ascoli-
Arzela theorem implies that {uk} is relatively compact in C([0, T ]; Hw) for every
T ≥ 0. By a diagonalization process it follows that {uk} is relatively compact
in C([0,∞); Hw). Hence, passing to a subsequence, we obtain that there exists a
weakly continuous H-valued function u(t) such that

(4.3) ukj → u as kj → ∞ in C([0,∞); Hw).

In particular, u
kj
n (t) → un(t) as kj → ∞, for all n, t ≥ 0. Thus, u(0) = u0. In

addition, note that

ukj
n (t) = ukj

n (0) +
∫ t

0

(−νλ2αnukj
n + λn(ukj

n−1)
2 − λn+1ukj

n u
kj

n+1 + gn) dτ,

for n ≤ kj − 1. Taking the limit as kj → ∞, we obtain

un(t) = un(0) +
∫ t

0

(−νλ2αnun + λnu2
n−1 − λn+1unun+1 + gn) dτ.

Since un(t) is continuous, it follows that un ∈ C1([0,∞)) and satisfies (3.1).
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It remains to prove that u(t) satisfies the energy inequality. Note that ukj (t)
satisfies the energy equality

|ukj (t)|2 + 2ν

∫ t

t0

‖ukj (τ )‖2 dτ = |ukj (t0)|2 + 2
∫ t

t0

(g, ukj (τ )) dτ,

for all t ≥ t0 ≥ 0. Hence, the sequence {ukj} is bounded in L2([t0, t]; V ) for all
t ≥ t0 ≥ 0. This, together with (4.3), implies that∫ t

t0

|ukj (τ ) − u(τ )|2 dτ → 0, as kj → ∞,

for all t ≥ t0 ≥ 0. In particular, |ukj (t)| → |u(t)| as kj → ∞ a.e. in [0,∞). Take
any t0 ≥ 0 for which |ukj (t0)| → |u(t0)| as kj → ∞. For every N ≥ 0, we have

|ukj (t)|2 + 2ν

∫ t

t0

∑
n≤N

λ2αnukj
n (τ )2 dτ ≤ |ukj (t0)|2 + 2

∫ t

t0

(g, ukj (τ )) dτ.

Since ukj (t) → u(t) weakly in H as kj → ∞ for all time t ≥ 0, we have that

|u(t)|2 + 2ν

∫ t

t0

∑
n≤N

λ2αnun(τ )2 dτ ≤ |u(t0)|2 + 2
∫ t

t0

(g, u(τ )) dτ.

Finally, taking the limit as N → ∞ and using Levi’s theorem, we obtain

|u(t)|2 + 2ν

∫ t

t0

‖u(τ )‖2 dτ ≤ |u(t0)|2 + 2
∫ t

t0

(g, u(τ )) dτ,

for all 0 ≤ t0 ≤ t, t0 a.e. in [0,∞). �

Note that this was a classical proof from the theory of NSE. Using the fact that
there is no backward energy transfer, we can actually show that every solution with
un(0) ≥ 0 is a Leray-Hopf solution and, moreover, is continuous from the right in
H for all time.

Theorem 4.2. Let u(t) be a solution of (3.1) with un(0) ≥ 0. Then un(t) ≥ 0 for
all t > 0, and u(t) satisfies the energy inequality

(4.4) |u(t)|2 + 2ν

∫ t

t0

‖u(τ )‖2 dτ ≤ |u(t0)|2 + 2
∫ t

t0

(g, u(τ )) dτ,

for all 0 ≤ t0 ≤ t.

Proof. A general solution for un(t) can be written as

(4.5) un(t) = un(0) exp
(
−

∫ t

0

νλ2αn + λn+1un+1(τ ) dτ

)
+

∫ t

0

exp
(
−

∫ t

s

νλ2αn + λn+1un+1(τ ) dτ

)
(gn + λnu2

n−1(s)) ds.

Recall that gn ≥ 0 for all n. Since un(0) ≥ 0 for all n, then un(t) ≥ 0 for all n,
t > 0. Hence, multiplying (3.1) by un, taking a sum from 1 to N , and integrating
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between t0 and t, we obtain
N∑

n=1

un(t)2−
N∑

n=1

un(t0)2 + 2ν

∫ t

t0

N∑
n=1

λ2αnun(τ )2 dτ

= −2
∫ t

t0

λN+1u2
NuN+1 dτ + 2

∫ t

t0

N∑
n=1

gnun dτ

≤ 2
∫ t

t0

N∑
n=1

gnun dτ.

Taking the limit as N → ∞, we obtain (4.4). �

Enstrophy estimates. We obtain the following estimate for the nonlinear term:

|(B(u, u), Au)| =

∣∣∣∣∣
∞∑

n=1

[
λ2α(n+1) − λ2αn

]
λnu2

nun+1

∣∣∣∣∣
= (λα − λ−α)

∣∣∣∣∣
∞∑

n=1

λ(α+1)nu2
nλα(n+1)un+1

∣∣∣∣∣
≤ cb(max

n
|λαnun|)

∞∑
n=1

λ(α+1)nu2
n

≤ cb‖u‖
∞∑

n=1

λ(α+1)nu2
n,

where cb = λα − λ−α > 0. When α ∈ [1/3, 1], Hölder’s inequality implies

|(B(u, u), Au)| ≤ cb‖u‖|Au|1/α−1|A1/2u|3−1/α

= cb|Au|1/α−1‖u‖4−1/α.

Choosing u to have only two consecutive nonzero terms, it is easy to check that
these estimates are sharp. Moreover, when α = 2/5, we have

|(B(u, u), Au)| ≤ cb|Au|3/2‖u‖3/2,

which is the same as the Sobolev estimate for the inertial term of the 3D NSE (see,
e.g., [6, 20]). Therefore, taking a scalar product of the equation (3.1) with Au and
using Young’s inequality, we obtain

1
2

d

dt
‖u‖2 ≤ −ν|Au|2 + cb|Au|3/2‖u‖3/2 + (g, Au)

≤ −ν|Au|2 +
ν

3
|Au|2 +

36c4
b

28ν3
‖u‖6 +

3
4ν

|g|2 +
ν

3
|Au|2

= −ν

3
|Au|2 +

36c4
b

28ν3
‖u‖6 +

3
4ν

|g|2,

a Riccati-type inequality for ‖u‖2. Hence, the model has the same enstrophy es-
timate as the 3D NSE, similar properties, and the same open question concerning
the regularity of the solutions in the case α = 2/5.

Another interesting case is α = 1/3. Then we have

(4.6) |(B(u, u), Au)| ≤ cb|Au|2‖u‖,
which corresponds to the 4D Navier-Stokes equations.
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Now consider the case where α > 1/3. Formally, we have

1
2

d

dt
‖u‖2 ≤ −ν|Au|2 + cb|Au|1/α−1‖u‖4−1/α + (g, Au)

≤ −ν|Au|2 +
ν

3
|Au|2 + c‖u‖

8α−2
3α−1 +

3
4ν

|g|2 +
ν

3
|Au|2

= −ν

3
|Au|2 + c‖u‖

8α−2
3α−1 +

3
4ν

|g|2,

for some constant c > 0. This means that if the initial data is in V , then u(t) re-
mains bounded in V for some time T . Applying the above estimate to the Galerkin
approximation and taking a limit, we immediately obtain the following local regu-
larity result.

Theorem 4.3. If α > 1/3, then for any u0 ∈ V there exists a strong solution u(t)
to (3.1) on some time interval [0, T ], T > 0 with u(0) = u0.

Finally, consider the case α ≥ 1/2. In this case the enstrophy estimate implies

(B(u, u), Au) ≤ cb|Au|‖u‖2.

Therefore, formally, we have

1
2

d

dt
‖u‖2 ≤ −ν|Au|2 + cb|Au|‖u‖2 + (g, Au)

≤ −ν|Au|2 +
ν

3
|Au|2 +

3c2
b

4ν
‖u‖4 +

3
4ν

|g|2 +
ν

3
|Au|2

= −ν

3
|Au|2 +

3c2
b

4ν
‖u‖4 +

3
4ν

|g|2.

This is again a Riccati-type inequality. Assume that u(t) is a strong solution on
some interval (0, t∗), and ‖u(t)‖ → +∞ as t → t∗−. Then

‖u(t)‖2 ≥ c

t∗ − t
, 0 < t < t∗,

for some positive constant c. However, this means that ‖u(t)‖2 is not locally in-
tegrable, which is in contradiction with the energy inequality. Hence, if the initial
data u0 ∈ V , then ‖u(t)‖ is bounded on every interval [0, T ], T > 0, and we have
the following.

Theorem 4.4. If α ≥ 1/2, then for any u0 ∈ V there exists a strong solution u(t)
to (3.1) on [0,∞) with u(0) = u0.

5. Blow-up in finite time

Let α < 1/3 and γ > 0. In this section we will prove that every solution u(t)
with large enough ‖u(0)‖γ blows up in finite time in the H1/3+γ norm. The idea is
the following. Taking a scalar product of the equation with Aγ/αu, we obtain

1
2

d

dt
‖u‖2

γ = −ν‖u‖2
α+γ + (B(u, u), Aγ/αu) + (g, Aγ/αu).
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In order to show a blow-up, we, in some sense, will invert the Sobolev estimates for
the nonlinear term. Note that

(B(u, u), Aγ/αu) ∼
∑

n

λ(1+2γ)nu2
nun+1.

If un ≥ 0 is monotonically decreasing in n, then

(B(u, u), Aγ/αu) �
∑

n

λ(1+2γ)nu3
n.

Obviously, this is not true in general. For example, if un = 0 for even n, then
(B(u, u), Aγ/αu) = 0. However, we will prove that a similar estimate holds if we
use the following function instead of the Hγ-norm:

H(t) := ‖u(t)‖2
γ + c

∑
n

λ2γn(unun+1)(t),

for some constant c > 0. More precisely, we will show that if ‖u‖γ is large enough,
then

1
2

d

dt
H � −ν‖u‖2

α+γ +
∑

n

λ(1+2γ)nu3
n

� −ν‖u‖2
α+γ + ‖u‖3

α+γ

� H3/2,

provided that α < 1/3. We will start with the following estimate.

Lemma 5.1. If α < 1/3, then for any γ ∈ (0, 1−3α) there exists a positive constant
A such that

∞∑
n=1

λ(1+2γ)n|un|3 ≥ A‖u‖3
α+γ .

Proof. Let ε := 2 − 6α − 2γ > 0. Note that λ−ε < 1. Let

A(γ) :=

( ∞∑
n=1

λ−εn

)−1/2

=
√

λε − 1.

Hölder’s inequality with p = 3 and q = 3/2 implies

‖u‖2
α+γ =

∞∑
n=1

λ2(α+γ)nu2
n

≤
( ∞∑

n=1

λ−εn

)1/3 ( ∞∑
n=1

λ(1+2γ)n|un|3
)2/3

= A−2/3

( ∞∑
n=1

λ(1+2γ)n|un|3
)2/3

.

Hence,
∞∑

n=1

λ(1+2γ)n|un|3 ≥ A‖u‖3
α+γ ,

which concludes the proof. �
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Lemma 5.2. Let u(t) be a solution to (3.1) and γ > 0. Let ‖u(t)‖2
γ be continuous

on [0,∞). Then the function

(5.1)
∞∑

n=1

λ2γn(unun+1)(t)

is continuous on [0,∞).

Proof. Let vn(t) = λ2γn(unun+1)(t). First, note that due to the Cauchy-Schwarz
inequality, the function (5.1) is less than or equal to ‖u(t)‖2

γ and, consequently, is
bounded on every interval [a, b], 0 ≤ a < b. Let t0 > 0. Since ‖u(t)‖2

γ is continuous
at t = t0, it follows that

lim
N→∞

lim sup
t→t0

∞∑
n=N

λ2γnu2
n(t) = 0.

Therefore,

lim
N→∞

lim sup
t→t0

∞∑
n=N

vn(t) = 0,

which means that (5.1) is continuous at t = t0. Indeed, since vn(t) is continuous
for every n, we have

lim sup
t→t0

∣∣∣∣∣
∞∑

n=1

vn(t) −
∞∑

n=1

vn(t0)

∣∣∣∣∣
= lim

N→∞
lim sup

t→t0

∣∣∣∣∣
N−1∑
n=1

vn(t) −
N−1∑
n=1

vn(t0) +
∞∑

n=N

vn(t) −
∞∑

n=N

vn(t0)

∣∣∣∣∣ = 0.

Similarly, the continuity of (5.1) from the right holds at t = 0. �

Now we proceed to our main result.

Theorem 5.3. Let u(t) be a solution to (3.1) with un(0) ≥ 0 and α < 1/3. Then
for every γ > 0, there exists a constant M(γ), such that ‖u(t)‖3

1/3+γ is not locally
integrable on [0,∞), provided ‖u(0)‖γ > M(γ).

Proof. Since ‖u‖γ1 ≤ ‖u‖γ2 for γ1 ≤ γ2, it is enough to prove the theorem in the
case 0 < γ < min{1/3, 1− 3α}. Given such a γ, let u(t) be a solution to (3.1) such
that ‖u(t)‖3

1/3+γ is integrable on [0, T ] for every T > 0. We will show that ‖u(0)‖γ

is bounded from above by a constant dependent on γ.
Note that un(t) ≥ 0 for all n, t > 0 due to Theorem 4.2. First, we obtain∫ T

0

∞∑
n=1

λ(1+2γ)nu2
nun+1 dτ ≤

∫ T

0

∞∑
n=1

λ(1+2γ)n(u3
n + u3

n+1) dτ

≤ 2
∫ T

0

( ∞∑
n=1

λ
2
3 (1+2γ)nu2

n

)3/2

dτ

≤ 2
∫ T

0

‖u(t)‖3
1/3+γ dτ

< ∞,

(5.2)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BLOW-UP FOR THE DYADIC MODEL 5113

for all T > 0. Thus,
∞∑

n=1

λ(1+2γ)n(u2
nun+1)(t) and

∞∑
n=1

λ(1+2γ)nun(t)3

are locally integrable on [0,∞). In addition, since α < 1/3, we have

‖u(t)‖2
α+γ ≤ ‖u(t)‖2

1/3+γ ,

which implies that ‖u(t)‖2
α+γ is locally integrable on [0,∞).

Now note that if un ≤ 1
2un+1, then unu2

n+1 ≤ 1
2u3

n+1. Otherwise, unu2
n+1 ≤

2u2
nun+1. Hence,

(5.3) unu2
n+1 ≤ 1

2u3
n+1 + 2u2

nun+1, n ∈ N.

This also implies that

unun+1un+2 ≤ 1
2u2

nun+1 + 1
2un+1u

2
n+2

≤ 1
2u2

nun+1 + 1
4u3

n+2 + u2
n+1un+2,

(5.4)

for all n ∈ N.
From (3.1) we obtain

d

dt
(unun+1) = − ν(λ2αn + λ2α(n+1))unun+1

+ λnu2
n−1un+1 − λn+1unu2

n+1

+ λn+1u3
n − λn+2unun+1un+2

+ gnun+1 + gn+1un.

This, together with inequalities (5.3) and (5.4), implies that

d

dt
(unun+1) + ν(1 + λ2α)λ2αnunun+1

+ 2λn+1u2
nun+1 + 1

2λn+2u2
nun+1 + λn+2u2

n+1un+2

≥ λn+1u3
n − 1

2λn+1u3
n+1 − 1

4λn+2u3
n+2.

Multiplying this by λ2γn, taking a sum from 1 to ∞, and integrating between 0 and
t, we get

∞∑
n=1

λ2γn(unun+1)(t) −
∞∑

n=1

λ2γn(unun+1)(0)

+ ν(1 + λ2α)
∫ t

0

∞∑
n=1

λ2(α+γ)nunun+1 dτ

+ (2λ + 1
2λ2 + λ1−2γ)

∫ t

0

∞∑
n=1

λ(1+2γ)nu2
nun+1 dτ

≥ (λ − 1
2λ−2γ − 1

4λ−4γ)
∫ t

0

∞∑
n=1

λ(1+2γ)nu3
n dτ

≥ λ

4

∫ t

0

∞∑
n=1

λ(1+2γ)nu3
n dτ,

(5.5)
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for all t ≥ 0. On the other hand, we have the following equality for the nonlinear
term:

−(B(u, u), Aγ/αu) =
∞∑

n=1

λ2γn+nu2
n−1un −

∞∑
n=1

λ2γn+n+1u2
nun+1

= c1

∞∑
n=1

λ(1+2γ)nu2
nun+1,

where c1 = λ2γ+1 − λ > 0. Now, multiplying (3.1) by λ2γnun, taking a sum from
1 to ∞, and integrating between 0 and t, we obtain

(5.6) ‖u(t)‖2
γ − ‖u(0)‖2

γ + 2ν

∫ t

0

‖u(τ )‖2
α+γ dτ

= 2c1

∫ t

0

∞∑
n=1

λ(1+2γ)nu2
nun+1 dτ + 2

∫ t

0

∞∑
n=1

λ2γngnun dτ,

for t ≥ 0. Note that the term with the force is integrable because γ ≤ 1/3. In
particular, (5.6) yields that ‖u(t)‖2

γ is continuous on [0,∞). Denote

H(t) := ‖u(t)‖2
γ + c2

∞∑
n=1

λ2γn(unun+1)(t),

where c2 = 2c1/(2λ + λ2/2 + λ1−2γ). Thanks to Lemma 5.2, H(t) is continuous on
[0,∞). We will show that H(t) is a Lyapunov function, i.e., H(t) is always increas-
ing. Moreover, we will see that H(t) blows up in finite time. Indeed, multiplying
(5.5) by c2 and adding (5.6), we get

H(t) − H(0) ≥ −2ν

∫ t

0

‖u(τ )‖2
α+γ dτ − νc3

∫ t

0

∞∑
n=1

λ2(α+γ)nunun+1 dτ

+
λc2

4

∫ t

0

∞∑
n=1

λ(1+2γ)nu3
n dτ,

where c3 = (1+λ2α)c2. Due to Lemma 5.1, there exists a constant A > 0 such that
∞∑

n=1

λ(1+2γ)nu3
n ≥ A‖u‖3

α+γ .

In addition, the Cauchy-Schwarz inequality implies
∞∑

n=1

λ2(α+γ)nunun+1 ≤ ‖u‖2
α+γ .

Therefore, we obtain

(5.7) H(t) − H(0) ≥ −ν(2 + c3)
∫ t

0

‖u(τ )‖2
α+γ dτ +

Aλc2

4

∫ t

0

‖u(τ )‖3
α+γ dτ,

for t ≥ 0. Note that

‖u(t)‖2
γ ≤ H(t) ≤ (1 + c2)‖u(t)‖2

γ .
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In particular,

‖u(t)‖α+γ ≥

√
H(t)
1 + c2

.

Let

M(γ) :=
8ν(2 + c3)

√
1 + c2

Aλc2
.

Assume that H(τ ) ≥ M2 on [0, t] for some t > 0. Then we have that ‖u(τ )‖α+γ ≥
8ν(2 + c3)/(Aλc2) on [0, t] and, consequently, (5.7) yields

(5.8) H(t) − H(0) ≥ c

∫ t

0

H(τ )3/2 dτ,

where c = Aλc2/8. Now assume that ‖u(0)‖γ > M . Then H(0) > M2 and (5.8)
holds for some small time t > 0. Then (5.8) automatically holds for every t > 0.

Note that (5.8) is a Riccati-type inequality. It is easy to see that H(t) blows up
in finite time. Indeed, let y(t) be the solution to the Riccati equation

y′(t) = cy(t)3/2, y(0) = 1
2H(0).

Then for some t∗ > 0, we have that y(t) → ∞ as t → t∗−. Consider

w(t) = H(t) − y(t).

It is easy to check that the function w(t) satisfies the following integral inequality:

w(t) − w(0) ≥ c

∫ t

0

w(τ )3/2 dτ,

for all t > 0, such that w(τ ) ≥ 0 on [0, t]. Note that w(0) > 0 and w(t) is continuous.
Thus, w(t) ≥ 0 for all t ∈ [0, t∗).

Now, since y(t) blows up in finite time, H(t) also blows up in finite time, which
contradicts the fact that H(t) is continuous on [0,∞). Hence, ‖u(0)‖γ ≤ M . �

6. Global attractor

In Section 4 we showed that the dyadic model possesses an absorbing ball with
a radius R larger than |g|/ν. Let X be a closed absorbing ball,

X := {u ∈ H : |u| ≤ R},
which is compact in the dw-metric. Then for any bounded set K ⊂ H, there exists
a time t0 such that

u(t) ∈ X, ∀t ≥ t0,

for every Leray-Hopf solution u(t) to (3.1) with the initial data u(0) ∈ K.
We recall the definition of an evolutionary system E from [4] (see also [3]). Let

T := {I : I = [T,∞) ⊂ R, or I = (−∞,∞)},
and for each I ⊂ T let F(I) denote the set of all X-valued functions on I. A map
E that associates to each I ∈ T a subset E(I) ⊂ F will be called an evolutionary
system if the following conditions are satisfied:

(1) E([0,∞)) = ∅.
(2) E(I + s) = {u(·) : u(· − s) ∈ E(I)} for all s ∈ R.
(3) {u(·)|I2 : u(·) ∈ E(I1)} ⊂ E(I2) for all pairs of I1, I2 ∈ Ω such that I2 ⊂ I1.
(4) E((−∞,∞)) = {u(·) : u(·)|[T,∞) ∈ E([T,∞)) ∀T ∈ R}.
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Let
R(t)A := {u(t) : u(0) ∈ A, u ∈ E([0,∞))},
R̃(t)A := {u(t) : u(0) ∈ A, u ∈ E((−∞,∞))}, A ⊂ X, t ≥ 0.

For A ⊂ X and r > 0, denote B•(A, r) = {u : d•(A, u) < r}, where • = s, w.
Now we define an attracting set and a global attractor as follows.

Definition 6.1. A set A ⊂ X is a d•-attracting set (• = s, w) if it uniformly
attracts X in the d•-metric; i.e., for any ε > 0 there exists t0 such that

R(t)X ⊂ B•(A, ε), ∀t ≥ t0.

A set A ⊂ X is invariant if R̃(t)A = A for all t ≥ 0. A set A• ⊂ X is a d•-global
attractor if A• is a minimal d•-closed d•-attracting set.

The following result was proved in [4]:

Theorem 6.2. The evolutionary system E always possesses a weak global attractor
Aw. In addition, if E([0,∞)) is compact in C([0,∞); Hw), then

(a) Aw = {u0 : u0 = u(0) for some u ∈ E((−∞,∞))},
(b) Aw is the maximal invariant set.

For the dyadic model, we define E in the following way:
E([T,∞)) := {u : u(·) is a Leray-Hopf solution on [T,∞)

and u(t) ∈ X ∀t ∈ [T,∞)}, T ∈ R,

E((∞,∞)) := {u : u(·) is a Leray-Hopf solution on (−∞,∞)

and u(t) ∈ X ∀t ∈ (−∞,∞)},
where X is the phase space defined in the beginning of the section. Clearly, E
satisfies properties (1)–(4). Then Theorem 6.2 immediately yields that the weak
global attractor Aw exists. In order to infer that Aw is the maximal invariant set,
we need the following result.

Lemma 6.3. E([0,∞)) is compact in C([0,∞); Hw).

Proof. Take any sequence uk ∈ E([0,∞)). First, note that

uk
n(t) ≤ R, ∀n, k, t ≥ 0.

Therefore,

|uk
n(t) − uk

n(s)| ≤ (νλ2αnR + λnR2 + λn+1R2 + gn)|t − s|,
for all n, k, t ≥ 0, s ≥ 0. Thus,

dw(uk(t), uk(s)) =
∞∑

n=1

1
2(n2)

|uk
n(t) − uk

n(s)|
1 + |uk

n(t) − uk
n(s)| ≤ c|t − s|,

for some constant c independent of k. Hence, {uk} is an equicontinuous sequence
of functions in C([0,∞); Hw) with bounded initial data. Therefore, the Ascoli-
Arzela theorem implies that {uk} is relatively compact in C([0, T ]; Hw) for all T >
0. Using a diagonalization process, we obtain that {uk} is relatively compact in
C([0,∞); Hw). Hence, there exists a weakly continuous H-valued function u(t) on
[0,∞) such that

(6.1) ukj → u as kj → ∞ in C([0,∞); Hw),
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for some subsequence kj . In particular,

|u(t)| ≤ lim inf
kj→∞

|ukj (t)| ≤ R, t ≥ 0,

i.e., u(t) ∈ X for all t ≥ 0.
In addition, since ukj (t) is a solution to (3.1), we have

ukj
n (t) = ukj

n (0) +
∫ t

0

(−νλ2αnukj
n + λn(ukj

n−1)
2 − λn+1ukj

n u
kj

n+1 + gn) dτ,

for all n. Taking the limit as kj → ∞, we obtain

un(t) = un(0) +
∫ t

0

(−νλ2αnun + λnu2
n−1 − λn+1unun+1 + gn) dτ,

for all n. Since un(t) is continuous, un ∈ C1([0,∞)) and satisfies (3.1).
In order to infer that u ∈ E([0,∞)), it remains to prove that u(t) satisfies the

energy inequality. Note that |ukj (t)| → |u(t)| as kj → ∞ a.e. in [0,∞). Since
ukj ∈ E([0,∞)), it satisfies the energy inequality starting from any t0 that is not
in the exceptional set of measure zero. Let Ex be the union of the exceptional
sets for all ukj . Note that Ex is of measure zero. Take any t0 /∈ Ex for which
|ukj (t0)| → |u(t0)| as kj → ∞. Then

|ukj (t)|2 + 2ν

∫ t

t0

‖ukj (τ )‖2 dτ ≤ |ukj (t0)|2 + 2
∫ t

t0

(g, ukj (τ )) dτ,

for all t ≥ t0. Hence,

|ukj (t)|2 + 2ν

∫ t

t0

∑
n≤N

λ2αnukj
n (τ )2 dτ ≤ |ukj (t0)|2 + 2

∫ t

t0

(g, ukj (τ )) dτ.

Since ukj (t) → u(t) weakly in H as kj → ∞ for all time t ≥ 0, we have that

|u(t)|2 + 2ν

∫ t

t0

∑
n≤N

λ2αnun(τ )2 dτ ≤ |u(t0)|2 + 2
∫ t

t0

(g, u(τ )) dτ.

Finally, taking the limit as N → ∞ and using Levi’s convergence theorem, we
obtain

|u(t)|2 + 2ν

∫ t

t0

‖u(τ )‖2 dτ ≤ |u(t0)|2 + 2
∫ t

t0

(g, u(τ )) dτ,

for all 0 ≤ t0 ≤ t, t0 a.e. in [0,∞). Hence, u ∈ E([0,∞)), which concludes the
proof. �

Now Theorem 6.2 implies that the weak global attractor Aw is the maximal
invariant set that consists of the points that belong to complete trajectories, i.e.,
trajectories in E((∞,∞)). Moreover, using (4.5), one can show that un ≥ 0 for
every u ∈ Aw. Consider now the case α < 1/3. It is easy to show that for every
γ ∈ (0, 1 − 3α), we can take g1 large enough, so that for every solution u(t) and
every t ≥ 0, we have |u(τ )| > M(γ) for some τ ∈ [t, t + 1]. Thanks to Theorem 5.3,
this means that Aw is not bounded in H1/3+γ . It is an open question whether Aw

is bounded in V .
We will now proceed to study the question whether Aw is also a strong global

attractor.
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Theorem 6.4. Let α ≥ 1/2. Then every Leray-Hopf solution u(t) of (3.1) satisfies
the energy equality

|u(t)|2 + 2ν

∫ t

t0

‖u(τ )‖2 dτ = |u(t0)|2 + 2
∫ t

t0

(g, u(τ )) dτ, 0 ≤ t0 ≤ t.

Proof. Let u(t) be a Leray-Hopf solution of (3.1). Thanks to the energy inequality
(4.4), ‖u(t)‖2 is locally integrable. Then we obtain∫ t

t0

∞∑
n=1

λnu2
nun+1 dτ ≤

∫ t

t0

∞∑
n=1

λn(u3
n + u3

n+1) dτ

≤ 2 sup
s∈[t0,t]

|u(s)|
∫ t

t0

∞∑
n=1

λnu2
n dτ

≤ 2R

∫ t

t0

‖u(τ )‖2 dτ

< ∞,

for 0 ≤ t0 ≤ t. Hence,∫ t

t0

λn+1u2
nun+1 dτ → 0, as n → ∞.

Multiplying (3.1) by un, taking a sum from 1 to N , and integrating between t0 and
t, we obtain

N∑
n=1

un(t)2 −
N∑

n=1

un(t0)2 + 2ν

∫ t

t0

N∑
n=1

λ2αnun(τ )2 dτ

= −2
∫ t

t0

λN+1u2
NuN+1 dτ + 2

∫ t

t0

N∑
n=1

gnun.

Finally, taking the limit as N → ∞, we arrive at

|u(t)|2 + 2ν

∫ t

t0

‖u(τ )‖2 dτ = |u(t0)|2 + 2
∫ t

t0

(g, u(τ )) dτ, 0 ≤ t0 ≤ t.

�

In [4] it was proved that the asymptotic compactness of the dynamical system E
implies that the strong global attractor As exists, is strongly compact, and coincides
with Aw. In the case where the evolutionary system consists of the Leray-Hopf weak
solutions to the 3D NSE, the continuity of the complete trajectories, i.e. trajectories
on Aw, implies the asymptotic compactness of E (see also [1] and [19] for similar
results). In [3] this result was proved for an abstract evolutionary system satisfying
the energy inequality. It immediately implies the following.

Corollary 6.5. Let α ≥ 1/2. Then Aw is a strongly compact strong global attrac-
tor.
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Note that if α ≥ 1/2, then, thanks to Theorem 4.4, for every initial datum in
H there exists a regular solution on [0,∞). Moreover, it can be shown that such
a solution is unique in the class of all Leray-Hopf solutions. Hence, Corollary 6.5
can also be obtained using a classical theory of semiflows. It is an open question
whether the continuity of the complete trajectories and, consequently, the existence
of the strong compact global attractor holds for α < 1/2.
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[13] N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-

Stokes equation with hyper-dissipation, Geom. Funct. Anal. 12 (2002), 355–379. MR1911664

(2003e:35243)
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