Necessary and sufficient conditions for optimality of nonconvex, noncoercive autonomous variational problems with constraints
HTML articles powered by AMS MathViewer
- by Cristina Marcelli PDF
- Trans. Amer. Math. Soc. 360 (2008), 5201-5227 Request permission
Abstract:
We consider the classical autonomous constrained variational problem of minimization of $\int _a^bf(v(t),v’(t)) dt$ in the class $\Omega :=\{v \in W^{1,1}(a,b):$ $v(a)=\alpha , v(b)= \beta , v’(t)\ge 0 \mbox {a.e. in } (a,b) \}$, where $f:[\alpha , \beta ]\times [0,+\infty ) \to \mathbb {R}$ is a lower semicontinuous, nonnegative integrand, which can be nonsmooth, nonconvex and noncoercive.
We prove a necessary and sufficient condition for the optimality of a trajectory $v_0\in \Omega$ in the form of a DuBois-Reymond inclusion involving the subdifferential of Convex Analysis. Moreover, we also provide a relaxation result and necessary and sufficient conditions for the existence of the minimum expressed in terms of an upper limitation for the assigned mean slope $\xi _0=(\beta -\alpha )/(b-a)$. Applications to various noncoercive variational problems are also included.
References
- Bernard Botteron and Bernard Dacorogna, Existence and nonexistence results for noncoercive variational problems and applications in ecology, J. Differential Equations 85 (1990), no. 2, 214–235. MR 1054549, DOI 10.1016/0022-0396(90)90116-7
- Bernard Botteron and Paolo Marcellini, A general approach to the existence of minimizers of one-dimensional noncoercive integrals of the calculus of variations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 8 (1991), no. 2, 197–223 (English, with French summary). MR 1096604, DOI 10.1016/S0294-1449(16)30272-4
- Giuseppe Buttazzo, Mariano Giaquinta, and Stefan Hildebrandt, One-dimensional variational problems, Oxford Lecture Series in Mathematics and its Applications, vol. 15, The Clarendon Press, Oxford University Press, New York, 1998. An introduction. MR 1694383
- P. Celada and S. Perrotta, Existence of minimizers for nonconvex, noncoercive simple integrals, SIAM J. Control Optim. 41 (2002), no. 4, 1118–1140. MR 1972505, DOI 10.1137/S0363012901387999
- P. Celada, G. Cupini, and M. Guidorzi, A sharp attainment result for nonconvex variational problems, Calc. Var. Partial Differential Equations 20 (2004), no. 3, 301–328. MR 2062946, DOI 10.1007/s00526-003-0238-5
- Arrigo Cellina, The classical problem of the calculus of variations in the autonomous case: relaxation and Lipschitzianity of solutions, Trans. Amer. Math. Soc. 356 (2004), no. 1, 415–426. MR 2020039, DOI 10.1090/S0002-9947-03-03347-6
- Arrigo Cellina, Giulia Treu, and Sandro Zagatti, On the minimum problem for a class of non-coercive functionals, J. Differential Equations 127 (1996), no. 1, 225–262. MR 1387265, DOI 10.1006/jdeq.1996.0069
- Lamberto Cesari, Optimization—theory and applications, Applications of Mathematics (New York), vol. 17, Springer-Verlag, New York, 1983. Problems with ordinary differential equations. MR 688142, DOI 10.1007/978-1-4613-8165-5
- F. H. Clarke, An indirect method in the calculus of variations, Trans. Amer. Math. Soc. 336 (1993), no. 2, 655–673. MR 1118823, DOI 10.1090/S0002-9947-1993-1118823-3
- Graziano Crasta and Annalisa Malusa, Existence results for noncoercive variational problems, SIAM J. Control Optim. 34 (1996), no. 6, 2064–2076. MR 1416500, DOI 10.1137/S0363012994278201
- N. Fusco, P. Marcellini, and A. Ornelas, Existence of minimizers for some non-convex one-dimensional integrals, Portugal. Math. 55 (1998), no. 2, 167–185. MR 1629622
- I. V. Girsanov, Lectures on mathematical theory of extremum problems, Lecture Notes in Economics and Mathematical Systems, Vol. 67, Springer-Verlag, Berlin-New York, 1972. Edited by B. T. Poljak; Translated from the Russian by D. Louvish. MR 0464021
- A. D. Ioffe and V. M. Tihomirov, Theorie der Extremalaufgaben, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979 (German). Translated from the Russian by Bernd Luderer. MR 527119
- Cristina Marcelli, One-dimensional non-coercive problems of the calculus of variations, Ann. Mat. Pura Appl. (4) 173 (1997), 145–161. MR 1625555, DOI 10.1007/BF01783466
- Cristina Marcelli, Non-coercive variational problems with constraints on the derivatives, J. Convex Anal. 5 (1998), no. 1, 1–17. MR 1649429
- Cristina Marcelli, Variational problems with nonconvex, noncoercive, highly discontinuous integrands: characterization and existence of minimizers, SIAM J. Control Optim. 40 (2002), no. 5, 1473–1490. MR 1882803, DOI 10.1137/S036301299936141X
- C. Marcelli, E. Outkine, and M. Sytchev, Remarks on necessary conditions for minimizers of one-dimensional variational problems, Nonlinear Anal. 48 (2002), no. 7, Ser. A: Theory Methods, 979–993. MR 1880258, DOI 10.1016/S0362-546X(00)00228-5
- Paolo Marcellini, Nonconvex integrals of the calculus of variations, Methods of nonconvex analysis (Varenna, 1989) Lecture Notes in Math., vol. 1446, Springer, Berlin, 1990, pp. 16–57. MR 1079758, DOI 10.1007/BFb0084930
- B. S. Mordukhovich, Existence theorems in nonconvex optimal control, Calculus of variations and optimal control (Haifa, 1998) Chapman & Hall/CRC Res. Notes Math., vol. 411, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 173–197. MR 1713863
- António Ornelas, Existence of scalar minimizers for nonconvex simple integrals of sum type, J. Math. Anal. Appl. 221 (1998), no. 2, 559–573. MR 1621754, DOI 10.1006/jmaa.1998.5915
Additional Information
- Cristina Marcelli
- Affiliation: Department of Mathematical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Email: marcelli@dipmat.univpm.it
- Received by editor(s): November 25, 2004
- Received by editor(s) in revised form: June 30, 2006
- Published electronically: May 2, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 360 (2008), 5201-5227
- MSC (2000): Primary 49J30, 49J52, 49K30
- DOI: https://doi.org/10.1090/S0002-9947-08-04514-5
- MathSciNet review: 2415071