## Necessary and sufficient conditions for optimality of nonconvex, noncoercive autonomous variational problems with constraints

HTML articles powered by AMS MathViewer

- by Cristina Marcelli PDF
- Trans. Amer. Math. Soc.
**360**(2008), 5201-5227 Request permission

## Abstract:

We consider the classical autonomous constrained variational problem of minimization of $\int _a^bf(v(t),v’(t)) dt$ in the class $\Omega :=\{v \in W^{1,1}(a,b):$ $v(a)=\alpha , v(b)= \beta , v’(t)\ge 0 \mbox {a.e. in } (a,b) \}$, where $f:[\alpha , \beta ]\times [0,+\infty ) \to \mathbb {R}$ is a lower semicontinuous, nonnegative integrand, which can be nonsmooth, nonconvex and noncoercive.

We prove a necessary and sufficient condition for the optimality of a trajectory $v_0\in \Omega$ in the form of a DuBois-Reymond inclusion involving the subdifferential of Convex Analysis. Moreover, we also provide a relaxation result and necessary and sufficient conditions for the existence of the minimum expressed in terms of an upper limitation for the assigned mean slope $\xi _0=(\beta -\alpha )/(b-a)$. Applications to various noncoercive variational problems are also included.

## References

- Bernard Botteron and Bernard Dacorogna,
*Existence and nonexistence results for noncoercive variational problems and applications in ecology*, J. Differential Equations**85**(1990), no. 2, 214–235. MR**1054549**, DOI 10.1016/0022-0396(90)90116-7 - Bernard Botteron and Paolo Marcellini,
*A general approach to the existence of minimizers of one-dimensional noncoercive integrals of the calculus of variations*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**8**(1991), no. 2, 197–223 (English, with French summary). MR**1096604**, DOI 10.1016/S0294-1449(16)30272-4 - Giuseppe Buttazzo, Mariano Giaquinta, and Stefan Hildebrandt,
*One-dimensional variational problems*, Oxford Lecture Series in Mathematics and its Applications, vol. 15, The Clarendon Press, Oxford University Press, New York, 1998. An introduction. MR**1694383** - P. Celada and S. Perrotta,
*Existence of minimizers for nonconvex, noncoercive simple integrals*, SIAM J. Control Optim.**41**(2002), no. 4, 1118–1140. MR**1972505**, DOI 10.1137/S0363012901387999 - P. Celada, G. Cupini, and M. Guidorzi,
*A sharp attainment result for nonconvex variational problems*, Calc. Var. Partial Differential Equations**20**(2004), no. 3, 301–328. MR**2062946**, DOI 10.1007/s00526-003-0238-5 - Arrigo Cellina,
*The classical problem of the calculus of variations in the autonomous case: relaxation and Lipschitzianity of solutions*, Trans. Amer. Math. Soc.**356**(2004), no. 1, 415–426. MR**2020039**, DOI 10.1090/S0002-9947-03-03347-6 - Arrigo Cellina, Giulia Treu, and Sandro Zagatti,
*On the minimum problem for a class of non-coercive functionals*, J. Differential Equations**127**(1996), no. 1, 225–262. MR**1387265**, DOI 10.1006/jdeq.1996.0069 - Lamberto Cesari,
*Optimization—theory and applications*, Applications of Mathematics (New York), vol. 17, Springer-Verlag, New York, 1983. Problems with ordinary differential equations. MR**688142**, DOI 10.1007/978-1-4613-8165-5 - F. H. Clarke,
*An indirect method in the calculus of variations*, Trans. Amer. Math. Soc.**336**(1993), no. 2, 655–673. MR**1118823**, DOI 10.1090/S0002-9947-1993-1118823-3 - Graziano Crasta and Annalisa Malusa,
*Existence results for noncoercive variational problems*, SIAM J. Control Optim.**34**(1996), no. 6, 2064–2076. MR**1416500**, DOI 10.1137/S0363012994278201 - N. Fusco, P. Marcellini, and A. Ornelas,
*Existence of minimizers for some non-convex one-dimensional integrals*, Portugal. Math.**55**(1998), no. 2, 167–185. MR**1629622** - I. V. Girsanov,
*Lectures on mathematical theory of extremum problems*, Lecture Notes in Economics and Mathematical Systems, Vol. 67, Springer-Verlag, Berlin-New York, 1972. Edited by B. T. Poljak; Translated from the Russian by D. Louvish. MR**0464021** - A. D. Ioffe and V. M. Tihomirov,
*Theorie der Extremalaufgaben*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979 (German). Translated from the Russian by Bernd Luderer. MR**527119** - Cristina Marcelli,
*One-dimensional non-coercive problems of the calculus of variations*, Ann. Mat. Pura Appl. (4)**173**(1997), 145–161. MR**1625555**, DOI 10.1007/BF01783466 - Cristina Marcelli,
*Non-coercive variational problems with constraints on the derivatives*, J. Convex Anal.**5**(1998), no. 1, 1–17. MR**1649429** - Cristina Marcelli,
*Variational problems with nonconvex, noncoercive, highly discontinuous integrands: characterization and existence of minimizers*, SIAM J. Control Optim.**40**(2002), no. 5, 1473–1490. MR**1882803**, DOI 10.1137/S036301299936141X - C. Marcelli, E. Outkine, and M. Sytchev,
*Remarks on necessary conditions for minimizers of one-dimensional variational problems*, Nonlinear Anal.**48**(2002), no. 7, Ser. A: Theory Methods, 979–993. MR**1880258**, DOI 10.1016/S0362-546X(00)00228-5 - Paolo Marcellini,
*Nonconvex integrals of the calculus of variations*, Methods of nonconvex analysis (Varenna, 1989) Lecture Notes in Math., vol. 1446, Springer, Berlin, 1990, pp. 16–57. MR**1079758**, DOI 10.1007/BFb0084930 - B. S. Mordukhovich,
*Existence theorems in nonconvex optimal control*, Calculus of variations and optimal control (Haifa, 1998) Chapman & Hall/CRC Res. Notes Math., vol. 411, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 173–197. MR**1713863** - António Ornelas,
*Existence of scalar minimizers for nonconvex simple integrals of sum type*, J. Math. Anal. Appl.**221**(1998), no. 2, 559–573. MR**1621754**, DOI 10.1006/jmaa.1998.5915

## Additional Information

**Cristina Marcelli**- Affiliation: Department of Mathematical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Email: marcelli@dipmat.univpm.it
- Received by editor(s): November 25, 2004
- Received by editor(s) in revised form: June 30, 2006
- Published electronically: May 2, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**360**(2008), 5201-5227 - MSC (2000): Primary 49J30, 49J52, 49K30
- DOI: https://doi.org/10.1090/S0002-9947-08-04514-5
- MathSciNet review: 2415071