## Mixed norm estimates for certain generalized Radon transforms

HTML articles powered by AMS MathViewer

- by Michael Christ and M. Burak Erdoğan PDF
- Trans. Amer. Math. Soc.
**360**(2008), 5477-5488 Request permission

## Abstract:

We obtain essentially optimal local mixed norm inequalities for certain generalized Radon transforms defined by integration over curves.## References

- Michael Christ,
*Convolution, curvature, and combinatorics: a case study*, Internat. Math. Res. Notices**19**(1998), 1033–1048. MR**1654767**, DOI 10.1155/S1073792898000610 - —,
*Lebesgue space bounds for one-dimensional generalized Radon transforms*, preprint. - —,
*Quasi-extremals for a Radon-like transform*, preprint. - Michael Christ and M. Burak Erdoǧan,
*Mixed norm estimates for a restricted X-ray transform*, J. Anal. Math.**87**(2002), 187–198. Dedicated to the memory of Thomas H. Wolff. MR**1945281**, DOI 10.1007/BF02868473 - Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger,
*Singular and maximal Radon transforms: analysis and geometry*, Ann. of Math. (2)**150**(1999), no. 2, 489–577. MR**1726701**, DOI 10.2307/121088 - M. Burak Erdoğan,
*Mixed-norm estimates for a restricted X-ray transform in ${\Bbb R}^4$ and ${\Bbb R}^5$*, Internat. Math. Res. Notices**11**(2001), 575–600. MR**1836731**, DOI 10.1155/S1073792801000307 - Allan Greenleaf and Andreas Seeger,
*Fourier integral operators with fold singularities*, J. Reine Angew. Math.**455**(1994), 35–56. MR**1293873**, DOI 10.1515/crll.1994.455.35 - Allan Greenleaf and Andreas Seeger,
*Fourier integral operators with cusp singularities*, Amer. J. Math.**120**(1998), no. 5, 1077–1119. MR**1646055** - Allan Greenleaf, Andreas Seeger, and Stephen Wainger,
*On X-ray transforms for rigid line complexes and integrals over curves in $\textbf {R}^4$*, Proc. Amer. Math. Soc.**127**(1999), no. 12, 3533–3545. MR**1670367**, DOI 10.1090/S0002-9939-99-05379-4 - Allan Greenleaf, Andreas Seeger, and Stephen Wainger,
*Estimates for generalized Radon transforms in three and four dimensions*, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998) Contemp. Math., vol. 251, Amer. Math. Soc., Providence, RI, 2000, pp. 243–254. MR**1771272**, DOI 10.1090/conm/251/03873 - Alexander Nagel, Elias M. Stein, and Stephen Wainger,
*Balls and metrics defined by vector fields. I. Basic properties*, Acta Math.**155**(1985), no. 1-2, 103–147. MR**793239**, DOI 10.1007/BF02392539 - D. H. Phong and E. M. Stein,
*Models of degenerate Fourier integral operators and Radon transforms*, Ann. of Math. (2)**140**(1994), no. 3, 703–722. MR**1307901**, DOI 10.2307/2118622 - D. H. Phong and E. M. Stein,
*The Newton polyhedron and oscillatory integral operators*, Acta Math.**179**(1997), no. 1, 105–152. MR**1484770**, DOI 10.1007/BF02392721 - D. H. Phong and E. M. Stein,
*Damped oscillatory integral operators with analytic phases*, Adv. Math.**134**(1998), no. 1, 146–177. MR**1612395**, DOI 10.1006/aima.1997.1704 - Andreas Seeger,
*Radon transforms and finite type conditions*, J. Amer. Math. Soc.**11**(1998), no. 4, 869–897. MR**1623430**, DOI 10.1090/S0894-0347-98-00280-X - Terence Tao and James Wright,
*$L^p$ improving bounds for averages along curves*, J. Amer. Math. Soc.**16**(2003), no. 3, 605–638. MR**1969206**, DOI 10.1090/S0894-0347-03-00420-X - Thomas Wolff,
*A sharp bilinear cone restriction estimate*, Ann. of Math. (2)**153**(2001), no. 3, 661–698. MR**1836285**, DOI 10.2307/2661365

## Additional Information

**Michael Christ**- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720-3840
- MR Author ID: 48950
- Email: mchrist@math.berkeley.edu
**M. Burak Erdoğan**- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- Email: berdogan@math.uiuc.edu
- Received by editor(s): September 7, 2005
- Received by editor(s) in revised form: November 9, 2006
- Published electronically: April 9, 2008
- Additional Notes: The first and second authors were partially supported by NSF grants DMS-040126 and DMS-0540084, respectively.
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**360**(2008), 5477-5488 - MSC (2000): Primary 44A12; Secondary 47G10
- DOI: https://doi.org/10.1090/S0002-9947-08-04548-0
- MathSciNet review: 2415081