Conformal cochains
Author:
Scott O. Wilson
Journal:
Trans. Amer. Math. Soc. 360 (2008), 5247-5264
MSC (2000):
Primary 57R57, 32G20; Secondary 30F99
DOI:
https://doi.org/10.1090/S0002-9947-08-04556-X
Published electronically:
April 10, 2008
Addendum:
Trans. Amer. Math. Soc. 365 (2013), 5033-5033.
MathSciNet review:
2415073
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
In this paper we define holomorphic cochains and an associated period matrix for triangulated closed topological surfaces. We use the combinatorial Hodge star operator introduced in the author’s paper of 2007, which depends on the choice of an inner product on the simplicial 1-cochains.
We prove that for a triangulated Riemannian 2-manifold (or a Riemann surface), and a particularly nice choice of inner product, the combinatorial period matrix converges to the (conformal) Riemann period matrix as the mesh of the triangulation tends to zero.
- Jozef Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms, Amer. J. Math. 98 (1976), no. 1, 79–104. MR 407872, DOI https://doi.org/10.2307/2373615
- J. Dodziuk and V. K. Patodi, Riemannian structures and triangulations of manifolds, J. Indian Math. Soc. (N.S.) 40 (1976), no. 1-4, 1–52 (1977). MR 488179
- Johan L. Dupont, Curvature and characteristic classes, Lecture Notes in Mathematics, Vol. 640, Springer-Verlag, Berlin-New York, 1978. MR 0500997
- Beno Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv. 17 (1945), 240–255 (German). MR 13318, DOI https://doi.org/10.1007/BF02566245
- H. M. Farkas and I. Kra, Riemann surfaces, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765
- Xianfeng Gu and Shing-Tung Yau, Computing conformal structures of surfaces, Commun. Inf. Syst. 2 (2002), no. 2, 121–145. MR 1958012, DOI https://doi.org/10.4310/CIS.2002.v2.n2.a2
- Yu. I. Manin, The partition function of the Polyakov string can be expressed in terms of theta-functions, Phys. Lett. B 172 (1986), no. 2, 184–185. MR 844733, DOI https://doi.org/10.1016/0370-2693%2886%2990833-6
- Ruben Costa-Santos and Barry M. McCoy, Finite size corrections for the Ising model on higher genus triangular lattices, J. Statist. Phys. 112 (2003), no. 5-6, 889–920. MR 2000227, DOI https://doi.org/10.1023/A%3A1024697307618
- Christian Mercat, Discrete Riemann surfaces and the Ising model, Comm. Math. Phys. 218 (2001), no. 1, 177–216. MR 1824204, DOI https://doi.org/10.1007/s002200000348
- Mercat, C. “Discrete period Matrices and Related Topics,” arxiv.org math-ph/0111043, June 2002.
- Mercat, C. “Discrete Polynomials and Discrete Holomorphic Approximation,” arxiv.org math-ph/0206041.
- Andrew Ranicki and Dennis Sullivan, A semi-local combinatorial formula for the signature of a $4k$-manifold, J. Differential Geometry 11 (1976), no. 1, 23–29. MR 423366
- Lieven Smits, Combinatorial approximation to the divergence of one-forms on surfaces, Israel J. Math. 75 (1991), no. 2-3, 257–271. MR 1164593, DOI https://doi.org/10.1007/BF02776027
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. IV, Publish or Perish, Inc., Boston, Mass., 1975. MR 0394452
- George Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1957. MR 0092855
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148
- Hassler Whitney, On products in a complex, Ann. of Math. (2) 39 (1938), no. 2, 397–432. MR 1503416, DOI https://doi.org/10.2307/1968795
- Scott O. Wilson, Cochain algebra on manifolds and convergence under refinement, Topology Appl. 154 (2007), no. 9, 1898–1920. MR 2319262, DOI https://doi.org/10.1016/j.topol.2007.01.017
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57R57, 32G20, 30F99
Retrieve articles in all journals with MSC (2000): 57R57, 32G20, 30F99
Additional Information
Scott O. Wilson
Affiliation:
School of Mathematics, University of Minnesota-Twin Cities, 127 Vincent Hall, 206 Church St. S.E., Minneapolis, Minnesota 55455
MR Author ID:
812534
Email:
scottw@math.umn.edu
Keywords:
Cochains,
Hodge-star,
Riemann surface,
period matrices
Received by editor(s):
August 8, 2006
Published electronically:
April 10, 2008
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.