Conformal cochains
HTML articles powered by AMS MathViewer
- by Scott O. Wilson PDF
- Trans. Amer. Math. Soc. 360 (2008), 5247-5264 Request permission
Addendum: Trans. Amer. Math. Soc. 365 (2013), 5033-5033.
Abstract:
In this paper we define holomorphic cochains and an associated period matrix for triangulated closed topological surfaces. We use the combinatorial Hodge star operator introduced in the author’s paper of 2007, which depends on the choice of an inner product on the simplicial 1-cochains.
We prove that for a triangulated Riemannian 2-manifold (or a Riemann surface), and a particularly nice choice of inner product, the combinatorial period matrix converges to the (conformal) Riemann period matrix as the mesh of the triangulation tends to zero.
References
- Jozef Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms, Amer. J. Math. 98 (1976), no. 1, 79–104. MR 407872, DOI 10.2307/2373615
- J. Dodziuk and V. K. Patodi, Riemannian structures and triangulations of manifolds, J. Indian Math. Soc. (N.S.) 40 (1976), no. 1-4, 1–52 (1977). MR 488179
- Johan L. Dupont, Curvature and characteristic classes, Lecture Notes in Mathematics, Vol. 640, Springer-Verlag, Berlin-New York, 1978. MR 0500997
- Beno Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv. 17 (1945), 240–255 (German). MR 13318, DOI 10.1007/BF02566245
- H. M. Farkas and I. Kra, Riemann surfaces, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765, DOI 10.1007/978-1-4612-2034-3
- Xianfeng Gu and Shing-Tung Yau, Computing conformal structures of surfaces, Commun. Inf. Syst. 2 (2002), no. 2, 121–145. MR 1958012, DOI 10.4310/CIS.2002.v2.n2.a2
- Yu. I. Manin, The partition function of the Polyakov string can be expressed in terms of theta-functions, Phys. Lett. B 172 (1986), no. 2, 184–185. MR 844733, DOI 10.1016/0370-2693(86)90833-6
- Ruben Costa-Santos and Barry M. McCoy, Finite size corrections for the Ising model on higher genus triangular lattices, J. Statist. Phys. 112 (2003), no. 5-6, 889–920. MR 2000227, DOI 10.1023/A:1024697307618
- Christian Mercat, Discrete Riemann surfaces and the Ising model, Comm. Math. Phys. 218 (2001), no. 1, 177–216. MR 1824204, DOI 10.1007/s002200000348
- Mercat, C. “Discrete period Matrices and Related Topics,” arxiv.org math-ph/0111043, June 2002.
- Mercat, C. “Discrete Polynomials and Discrete Holomorphic Approximation,” arxiv.org math-ph/0206041.
- Andrew Ranicki and Dennis Sullivan, A semi-local combinatorial formula for the signature of a $4k$-manifold, J. Differential Geometry 11 (1976), no. 1, 23–29. MR 423366
- Lieven Smits, Combinatorial approximation to the divergence of one-forms on surfaces, Israel J. Math. 75 (1991), no. 2-3, 257–271. MR 1164593, DOI 10.1007/BF02776027
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. IV, Publish or Perish, Inc., Boston, Mass., 1975. MR 0394452
- George Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957. MR 0092855
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148
- Hassler Whitney, On products in a complex, Ann. of Math. (2) 39 (1938), no. 2, 397–432. MR 1503416, DOI 10.2307/1968795
- Scott O. Wilson, Cochain algebra on manifolds and convergence under refinement, Topology Appl. 154 (2007), no. 9, 1898–1920. MR 2319262, DOI 10.1016/j.topol.2007.01.017
Additional Information
- Scott O. Wilson
- Affiliation: School of Mathematics, University of Minnesota-Twin Cities, 127 Vincent Hall, 206 Church St. S.E., Minneapolis, Minnesota 55455
- MR Author ID: 812534
- Email: scottw@math.umn.edu
- Received by editor(s): August 8, 2006
- Published electronically: April 10, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 5247-5264
- MSC (2000): Primary 57R57, 32G20; Secondary 30F99
- DOI: https://doi.org/10.1090/S0002-9947-08-04556-X
- MathSciNet review: 2415073