An infinite family of non-isomorphic C$^*$-algebras with identical $\mathrm {K}$-theory
HTML articles powered by AMS MathViewer
- by Andrew S. Toms PDF
- Trans. Amer. Math. Soc. 360 (2008), 5343-5354 Request permission
Abstract:
We exhibit a countably infinite family of simple, separable, nuclear, and mutually non-isomorphic C$^*$-algebras which agree on $\mathrm {K}$-theory and traces. The algebras do not absorb the Jiang-Su algebra $\mathcal {Z}$ tensorially, answering a question of N. C. Phillips. They are also pairwise shape and Morita equivalent, confirming a conjecture from our earlier work. The distinguishing invariant is the radius of comparison, a non-stable invariant of the Cuntz semigroup.References
- Bruce E. Blackadar, Traces on simple AF $C^{\ast }$-algebras, J. Functional Analysis 38 (1980), no. 2, 156–168. MR 587906, DOI 10.1016/0022-1236(80)90062-2
- Bruce Blackadar and David Handelman, Dimension functions and traces on $C^{\ast }$-algebras, J. Functional Analysis 45 (1982), no. 3, 297–340. MR 650185, DOI 10.1016/0022-1236(82)90009-X
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- Brown, N., Perera, F., and Toms, A. S.: The Cuntz semigroup, the Elliott conjecture, and dimension functions on C$^*$-algebras, to appear in J. Reine Angew. Math., arXiv preprint math.OA/0609182 (2006)
- Joachim Cuntz, Dimension functions on simple $C^*$-algebras, Math. Ann. 233 (1978), no. 2, 145–153. MR 467332, DOI 10.1007/BF01421922
- George A. Elliott, The classification problem for amenable $C^*$-algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 922–932. MR 1403992
- Guihua Gong, Xinhui Jiang, and Hongbing Su, Obstructions to $\scr Z$-stability for unital simple $C^*$-algebras, Canad. Math. Bull. 43 (2000), no. 4, 418–426. MR 1793944, DOI 10.4153/CMB-2000-050-1
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247
- Xinhui Jiang and Hongbing Su, On a simple unital projectionless $C^*$-algebra, Amer. J. Math. 121 (1999), no. 2, 359–413. MR 1680321
- Eberhard Kirchberg and Mikael Rørdam, Non-simple purely infinite $C^\ast$-algebras, Amer. J. Math. 122 (2000), no. 3, 637–666. MR 1759891
- Francesc Perera and Andrew S. Toms, Recasting the Elliott conjecture, Math. Ann. 338 (2007), no. 3, 669–702. MR 2317934, DOI 10.1007/s00208-007-0093-3
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- Mikael Rørdam, A simple $C^*$-algebra with a finite and an infinite projection, Acta Math. 191 (2003), no. 1, 109–142. MR 2020420, DOI 10.1007/BF02392697
- Mikael Rørdam, The stable and the real rank of $\scr Z$-absorbing $C^*$-algebras, Internat. J. Math. 15 (2004), no. 10, 1065–1084. MR 2106263, DOI 10.1142/S0129167X04002661
- Rørdam, M., private communication
- Andrew Toms, On the independence of $K$-theory and stable rank for simple $C^*$-algebras, J. Reine Angew. Math. 578 (2005), 185–199. MR 2113894, DOI 10.1515/crll.2005.2005.578.185
- Toms, A. S.: On the classification problem for nuclear C$^*$-algebras, Ann. of Math. (2) 167 (2008), 1059-1074.
- Andrew S. Toms, Flat dimension growth for $C^*$-algebras, J. Funct. Anal. 238 (2006), no. 2, 678–708. MR 2253738, DOI 10.1016/j.jfa.2006.01.010
- Toms, A. S.: Stability in the Cuntz semigroup of a commutative C$^*$-algebra, Proc. London Math. Soc. 96 (2008), 1-25.
- Jesper Villadsen, Simple $C^*$-algebras with perforation, J. Funct. Anal. 154 (1998), no. 1, 110–116. MR 1616504, DOI 10.1006/jfan.1997.3168
Additional Information
- Andrew S. Toms
- Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele St.,Toronto, Ontario, Canada M3J 1P3
- Email: atoms@mathstat.yorku.ca
- Received by editor(s): September 15, 2006
- Published electronically: May 21, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 5343-5354
- MSC (2000): Primary 46L35; Secondary 46L80
- DOI: https://doi.org/10.1090/S0002-9947-08-04583-2
- MathSciNet review: 2415076