Multiple ergodic averages for three polynomials and applications
HTML articles powered by AMS MathViewer
- by Nikos Frantzikinakis PDF
- Trans. Amer. Math. Soc. 360 (2008), 5435-5475 Request permission
Abstract:
We find the smallest characteristic factor and a limit formula for the multiple ergodic averages associated to any family of three polynomials and polynomial families of the form $\{l_1p,l_2p,\ldots ,l_kp\}$. We then derive several multiple recurrence results and combinatorial implications, including an answer to a question of Brown, Graham, and Landman, and a generalization of the Polynomial Szemerédi Theorem of Bergelson and Leibman for families of three polynomials with not necessarily zero constant term. We also simplify and generalize a recent result of Bergelson, Host, and Kra, showing that for all $\varepsilon >0$ and every subset of the integers $\Lambda$ the set \[ \big \{n\in \mathbb {N}\colon d^*\big (\Lambda \cap (\Lambda +p_1(n))\cap (\Lambda +p_2(n))\cap (\Lambda + p_3(n))\big )>(d^*(\Lambda ))^4-\varepsilon \big \} \] has bounded gaps for “most” choices of integer polynomials $p_1,p_2,p_3$.References
- L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 513–530 (Russian). MR 0143040
- L. Auslander, L. Green, F. Hahn. Flows on homogeneous spaces, With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg, Annals of Mathematics Studies, 53, Princeton University Press, Princeton, N.J. (1963).
- F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 331–332. MR 18694, DOI 10.1073/pnas.32.12.331
- Daniel Berend and Yuri Bilu, Polynomials with roots modulo every integer, Proc. Amer. Math. Soc. 124 (1996), no. 6, 1663–1671. MR 1307495, DOI 10.1090/S0002-9939-96-03210-8
- V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), no. 3, 337–349. MR 912373, DOI 10.1017/S0143385700004090
- Vitaly Bergelson, Bernard Host, and Bryna Kra, Multiple recurrence and nilsequences, Invent. Math. 160 (2005), no. 2, 261–303. With an appendix by Imre Ruzsa. MR 2138068, DOI 10.1007/s00222-004-0428-6
- V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), no. 3, 725–753. MR 1325795, DOI 10.1090/S0894-0347-96-00194-4
- V. Bergelson, A. Leibman, E. Lesigne. Weyl complexity of a system of polynomials and constructions in combinatorial number theory, to appear in J. Analyse Math.
- Tom C. Brown, Ronald L. Graham, and Bruce M. Landman, On the set of common differences in van der Waerden’s theorem on arithmetic progressions, Canad. Math. Bull. 42 (1999), no. 1, 25–36. MR 1695890, DOI 10.4153/CMB-1999-003-9
- Jean-Pierre Conze and Emmanuel Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), no. 2, 143–175 (French, with English summary). MR 788966
- Jean-Pierre Conze and Emmanuel Lesigne, Sur un théorème ergodique pour des mesures diagonales, Probabilités, Publ. Inst. Rech. Math. Rennes, vol. 1987, Univ. Rennes I, Rennes, 1988, pp. 1–31 (French). MR 989141
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625
- H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291 (1979). MR 531279, DOI 10.1007/BF02790016
- Nikos Frantzikinakis, Uniformity in the polynomial Wiener-Wintner theorem, Ergodic Theory Dynam. Systems 26 (2006), no. 4, 1061–1071. MR 2246591, DOI 10.1017/S0143385706000204
- Nikos Frantzikinakis and Bryna Kra, Polynomial averages converge to the product of integrals, Israel J. Math. 148 (2005), 267–276. Probability in mathematics. MR 2191231, DOI 10.1007/BF02775439
- Nikos Frantzikinakis and Bryna Kra, Ergodic averages for independent polynomials and applications, J. London Math. Soc. (2) 74 (2006), no. 1, 131–142. MR 2254556, DOI 10.1112/S0024610706023374
- B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal. 15 (2005), no. 2, 340–376. MR 2153903, DOI 10.1007/s00039-005-0509-8
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Bernard Host and Bryna Kra, Convergence of polynomial ergodic averages, Israel J. Math. 149 (2005), 1–19. Probability in mathematics. MR 2191208, DOI 10.1007/BF02772534
- P. Koester. An extension of a method of Behrend in additive combinatorics, Online Journal of Analytic Combinatorics, (2008), no. 3.
- A. Leibman, Polynomial mappings of groups, Israel J. Math. 129 (2002), 29–60. MR 1910931, DOI 10.1007/BF02773152
- A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 201–213. MR 2122919, DOI 10.1017/S0143385704000215
- A. Leibman, Pointwise convergence of ergodic averages for polynomial actions of ${\Bbb Z}^d$ by translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 215–225. MR 2122920, DOI 10.1017/S0143385704000227
- A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math. 146 (2005), 303–315. MR 2151605, DOI 10.1007/BF02773538
- A. Leibman. Host-Kra and Ziegler factors and convergence of multiple averages, Handbook of Dynamical Systems, vol. 1B, Elsevier, (2005), 841–853.
- A. Leibman. Orbit of the diagonal of a power of a nilmanifold, Preprint, Available at http://www.math.ohio-state.edu/leibman/preprints/OrbDiag.pdf
- Emmanuel Lesigne, Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 379–391 (French, with English summary). MR 1116647, DOI 10.1017/S0143385700006209
- William Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771. MR 260975, DOI 10.2307/2373350
- Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1989. Corrected reprint of the 1983 original. MR 1073173
- Imre Z. Ruzsa, Solving a linear equation in a set of integers. I, Acta Arith. 65 (1993), no. 3, 259–282. MR 1254961, DOI 10.4064/aa-65-3-259-282
- E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 369312, DOI 10.4064/aa-27-1-199-245
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- T. Ziegler, A non-conventional ergodic theorem for a nilsystem, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1357–1370. MR 2158410, DOI 10.1017/S0143385703000518
- Tamar Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), no. 1, 53–97. MR 2257397, DOI 10.1090/S0894-0347-06-00532-7
Additional Information
- Nikos Frantzikinakis
- Affiliation: Department of Mathematics, University of Memphis, Memphis, Tennessee 38152-3240
- MR Author ID: 712393
- ORCID: 0000-0001-7392-5387
- Email: frantzikinakis@gmail.com
- Received by editor(s): October 17, 2006
- Published electronically: April 25, 2008
- Additional Notes: The author was partially supported by NSF grant DMS-0111298.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 5435-5475
- MSC (2000): Primary 37A45; Secondary 37A30, 28D05
- DOI: https://doi.org/10.1090/S0002-9947-08-04591-1
- MathSciNet review: 2415080