Standard graded vertex cover algebras, cycles and leaves
HTML articles powered by AMS MathViewer
- by Jürgen Herzog, Takayuki Hibi, Ngô Viêt Trung and Xinxian Zheng PDF
- Trans. Amer. Math. Soc. 360 (2008), 6231-6249 Request permission
Abstract:
The aim of this paper is to characterize simplicial complexes which have standard graded vertex cover algebras. This property has several nice consequences for the squarefree monomial ideals defining these algebras. It turns out that such simplicial complexes are closely related to a range of hypergraphs which generalize bipartite graphs and trees. These relationships allow us to obtain very general results on standard graded vertex cover algebras which cover previous major results on Rees algebras of squarefree monomial ideals.References
- C. Berge, Sur certains hypergraphes généralisant les graphes bipartites, Combinatorial theory and its applications, I (Proc. Colloq., Balatonfüred, 1969) North-Holland, Amsterdam, 1970, pp. 119–133 (French). MR 0297599
- Claude Berge, Hypergraphs, North-Holland Mathematical Library, vol. 45, North-Holland Publishing Co., Amsterdam, 1989. Combinatorics of finite sets; Translated from the French. MR 1013569
- Claude Berge and Michel Las Vergnas, Sur un théorème du type König pour hypergraphes, Ann. New York Acad. Sci. 175 (1970), 32–40 (French). MR 266787
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Aldo Conca and Emanuela De Negri, $M$-sequences, graph ideals, and ladder ideals of linear type, J. Algebra 211 (1999), no. 2, 599–624. MR 1666661, DOI 10.1006/jabr.1998.7740
- G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71–76. MR 130190, DOI 10.1007/BF02992776
- Pierre Duchet, Hypergraphs, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, pp. 381–432. MR 1373663
- Cesar A. Escobar, Rafael H. Villarreal, and Yuji Yoshino, Torsion freeness and normality of blowup rings of monomial ideals, Commutative algebra, Lect. Notes Pure Appl. Math., vol. 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 69–84. MR 2184791, DOI 10.1201/9781420028324.ch7
- Martin Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983), no. 2-3, 173–189. MR 685625, DOI 10.1016/0012-365X(83)90154-1
- Sara Faridi, The facet ideal of a simplicial complex, Manuscripta Math. 109 (2002), no. 2, 159–174. MR 1935027, DOI 10.1007/s00229-002-0293-9
- D. R. Fulkerson, A. J. Hoffman, and Rosa Oppenheim, On balanced matrices, Math. Programming Stud. 1 (1974), 120–132. Pivoting and extensions. MR 458842, DOI 10.1007/bfb0121244
- Isidoro Gitler, Enrique Reyes, and Rafael H. Villarreal, Blowup algebras of ideals of vertex covers of bipartite graphs, Algebraic structures and their representations, Contemp. Math., vol. 376, Amer. Math. Soc., Providence, RI, 2005, pp. 273–279. MR 2147027, DOI 10.1090/conm/376/06963
- I. Gitler, C.E. Valencia and R. Villarreal, A note on Rees algebras and the MFMC property, Preprint 2005.
- Jürgen Herzog, Takayuki Hibi, and Ngô Viêt Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (2007), no. 1, 304–322. MR 2298826, DOI 10.1016/j.aim.2006.06.007
- Jürgen Herzog, Takayuki Hibi, and Xinxian Zheng, Dirac’s theorem on chordal graphs and Alexander duality, European J. Combin. 25 (2004), no. 7, 949–960. MR 2083448, DOI 10.1016/j.ejc.2003.12.008
- Hidefumi Ohsugi and Takayuki Hibi, Koszul bipartite graphs, Adv. in Appl. Math. 22 (1999), no. 1, 25–28. MR 1657721, DOI 10.1006/aama.1998.0615
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI 10.2307/1970791
- A. J. Hoffman, A. W. J. Kolen, and M. Sakarovitch, Totally-balanced and greedy matrices, SIAM J. Algebraic Discrete Methods 6 (1985), no. 4, 721–730. MR 801001, DOI 10.1137/0606070
- Craig Huneke, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), no. 1, 121–137. MR 638557
- Craig Huneke, Aron Simis, and Wolmer Vasconcelos, Reduced normal cones are domains, Invariant theory (Denton, TX, 1986) Contemp. Math., vol. 88, Amer. Math. Soc., Providence, RI, 1989, pp. 95–101. MR 999985, DOI 10.1090/conm/088/999985
- Anna Lubiw, Doubly lexical orderings of matrices, SIAM J. Comput. 16 (1987), no. 5, 854–879. MR 908874, DOI 10.1137/0216057
- M. Pelsmajer, J. Tokaz and D.B. West, New proofs for strongly chordal graphs and chordal bipartite graphs, Preprint, 2004.
- Aron Simis, Wolmer V. Vasconcelos, and Rafael H. Villarreal, On the ideal theory of graphs, J. Algebra 167 (1994), no. 2, 389–416. MR 1283294, DOI 10.1006/jabr.1994.1192
- Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
- Lian Wen Zhang, Studies on hypergraphs. I. Hyperforests, Discrete Appl. Math. 42 (1993), no. 1, 95–112. MR 1206332, DOI 10.1016/0166-218X(93)90182-N
- X. Zheng, Homological properties of monomial ideals associated to quasi-trees and lattices, Dissertation, Essen, August 25, 2004.
- Xinxian Zheng, Resolutions of facet ideals, Comm. Algebra 32 (2004), no. 6, 2301–2324. MR 2100472, DOI 10.1081/AGB-120037222
Additional Information
- Jürgen Herzog
- Affiliation: Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany
- MR Author ID: 189999
- Email: juergen.herzog@uni-essen.de
- Takayuki Hibi
- Affiliation: Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan
- MR Author ID: 219759
- Email: hibi@math.sci.osaka-u.ac.jp
- Ngô Viêt Trung
- Affiliation: Institute of Mathematics, Vien Toan Hoc, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
- MR Author ID: 207806
- Email: nvtrung@math.ac.vn
- Xinxian Zheng
- Affiliation: Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany
- Email: xinxian.zheng@uni-essen.de
- Received by editor(s): June 12, 2006
- Published electronically: July 28, 2008
- Additional Notes: The third author was supported by the ‘Leibniz-Program’ of Hélène Esnault and Eckart Viehweg during the preparation of this paper.
- © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 360 (2008), 6231-6249
- MSC (2000): Primary 13A30, 05C65
- DOI: https://doi.org/10.1090/S0002-9947-08-04461-9
- MathSciNet review: 2434285