Standard graded vertex cover algebras, cycles and leaves
Authors:
Jürgen Herzog, Takayuki Hibi, Ngô Viêt Trung and Xinxian Zheng
Journal:
Trans. Amer. Math. Soc. 360 (2008), 6231-6249
MSC (2000):
Primary 13A30, 05C65
DOI:
https://doi.org/10.1090/S0002-9947-08-04461-9
Published electronically:
July 28, 2008
MathSciNet review:
2434285
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The aim of this paper is to characterize simplicial complexes which have standard graded vertex cover algebras. This property has several nice consequences for the squarefree monomial ideals defining these algebras. It turns out that such simplicial complexes are closely related to a range of hypergraphs which generalize bipartite graphs and trees. These relationships allow us to obtain very general results on standard graded vertex cover algebras which cover previous major results on Rees algebras of squarefree monomial ideals.
- C. Berge, Sur certains hypergraphes généralisant les graphes bipartites, Combinatorial theory and its applications, I (Proc. Colloq., Balatonfüred, 1969) North-Holland, Amsterdam, 1970, pp. 119–133 (French). MR 0297599
- Claude Berge, Hypergraphs, North-Holland Mathematical Library, vol. 45, North-Holland Publishing Co., Amsterdam, 1989. Combinatorics of finite sets; Translated from the French. MR 1013569
- Claude Berge and Michel Las Vergnas, Sur un théorème du type König pour hypergraphes, Ann. New York Acad. Sci. 175 (1970), 32–40 (French). MR 266787
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Aldo Conca and Emanuela De Negri, $M$-sequences, graph ideals, and ladder ideals of linear type, J. Algebra 211 (1999), no. 2, 599–624. MR 1666661, DOI https://doi.org/10.1006/jabr.1998.7740
- G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71–76. MR 130190, DOI https://doi.org/10.1007/BF02992776
- Pierre Duchet, Hypergraphs, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, pp. 381–432. MR 1373663
- Cesar A. Escobar, Rafael H. Villarreal, and Yuji Yoshino, Torsion freeness and normality of blowup rings of monomial ideals, Commutative algebra, Lect. Notes Pure Appl. Math., vol. 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 69–84. MR 2184791, DOI https://doi.org/10.1201/9781420028324.ch7
- Martin Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983), no. 2-3, 173–189. MR 685625, DOI https://doi.org/10.1016/0012-365X%2883%2990154-1
- Sara Faridi, The facet ideal of a simplicial complex, Manuscripta Math. 109 (2002), no. 2, 159–174. MR 1935027, DOI https://doi.org/10.1007/s00229-002-0293-9
- D. R. Fulkerson, A. J. Hoffman, and Rosa Oppenheim, On balanced matrices, Math. Programming Stud. 1 (1974), 120–132. Pivoting and extensions. MR 458842, DOI https://doi.org/10.1007/bfb0121244
- Isidoro Gitler, Enrique Reyes, and Rafael H. Villarreal, Blowup algebras of ideals of vertex covers of bipartite graphs, Algebraic structures and their representations, Contemp. Math., vol. 376, Amer. Math. Soc., Providence, RI, 2005, pp. 273–279. MR 2147027, DOI https://doi.org/10.1090/conm/376/06963
- I. Gitler, C.E. Valencia and R. Villarreal, A note on Rees algebras and the MFMC property, Preprint 2005.
- Jürgen Herzog, Takayuki Hibi, and Ngô Viêt Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (2007), no. 1, 304–322. MR 2298826, DOI https://doi.org/10.1016/j.aim.2006.06.007
- Jürgen Herzog, Takayuki Hibi, and Xinxian Zheng, Dirac’s theorem on chordal graphs and Alexander duality, European J. Combin. 25 (2004), no. 7, 949–960. MR 2083448, DOI https://doi.org/10.1016/j.ejc.2003.12.008
- Hidefumi Ohsugi and Takayuki Hibi, Koszul bipartite graphs, Adv. in Appl. Math. 22 (1999), no. 1, 25–28. MR 1657721, DOI https://doi.org/10.1006/aama.1998.0615
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI https://doi.org/10.2307/1970791
- A. J. Hoffman, A. W. J. Kolen, and M. Sakarovitch, Totally-balanced and greedy matrices, SIAM J. Algebraic Discrete Methods 6 (1985), no. 4, 721–730. MR 801001, DOI https://doi.org/10.1137/0606070
- Craig Huneke, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), no. 1, 121–137. MR 638557
- Craig Huneke, Aron Simis, and Wolmer Vasconcelos, Reduced normal cones are domains, Invariant theory (Denton, TX, 1986) Contemp. Math., vol. 88, Amer. Math. Soc., Providence, RI, 1989, pp. 95–101. MR 999985, DOI https://doi.org/10.1090/conm/088/999985
- Anna Lubiw, Doubly lexical orderings of matrices, SIAM J. Comput. 16 (1987), no. 5, 854–879. MR 908874, DOI https://doi.org/10.1137/0216057
- M. Pelsmajer, J. Tokaz and D.B. West, New proofs for strongly chordal graphs and chordal bipartite graphs, Preprint, 2004.
- Aron Simis, Wolmer V. Vasconcelos, and Rafael H. Villarreal, On the ideal theory of graphs, J. Algebra 167 (1994), no. 2, 389–416. MR 1283294, DOI https://doi.org/10.1006/jabr.1994.1192
- Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
- Lian Wen Zhang, Studies on hypergraphs. I. Hyperforests, Discrete Appl. Math. 42 (1993), no. 1, 95–112. MR 1206332, DOI https://doi.org/10.1016/0166-218X%2893%2990182-N
- X. Zheng, Homological properties of monomial ideals associated to quasi-trees and lattices, Dissertation, Essen, August 25, 2004.
- Xinxian Zheng, Resolutions of facet ideals, Comm. Algebra 32 (2004), no. 6, 2301–2324. MR 2100472, DOI https://doi.org/10.1081/AGB-120037222
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13A30, 05C65
Retrieve articles in all journals with MSC (2000): 13A30, 05C65
Additional Information
Jürgen Herzog
Affiliation:
Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany
MR Author ID:
189999
Email:
juergen.herzog@uni-essen.de
Takayuki Hibi
Affiliation:
Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan
MR Author ID:
219759
Email:
hibi@math.sci.osaka-u.ac.jp
Ngô Viêt Trung
Affiliation:
Institute of Mathematics, Vien Toan Hoc, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
MR Author ID:
207806
Email:
nvtrung@math.ac.vn
Xinxian Zheng
Affiliation:
Fachbereich Mathematik und Informatik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany
Email:
xinxian.zheng@uni-essen.de
Received by editor(s):
June 12, 2006
Published electronically:
July 28, 2008
Additional Notes:
The third author was supported by the ‘Leibniz-Program’ of Hélène Esnault and Eckart Viehweg during the preparation of this paper.
Article copyright:
© Copyright 2008
American Mathematical Society