## A finite group acting on the moduli space of K3 surfaces

HTML articles powered by AMS MathViewer

- by Paolo Stellari PDF
- Trans. Amer. Math. Soc.
**360**(2008), 6631-6642 Request permission

## Abstract:

We consider the natural action of a finite group on the moduli space of polarized K3 surfaces which induces a duality defined by Mukai for surfaces of this type. We show that the group permutes polarized Fourier-Mukai partners of polarized K3 surfaces and we study the divisors in the fixed loci of the elements of this finite group.## References

*Géométrie des surfaces $K3$: modules et périodes*, Société Mathématique de France, Paris, 1985 (French). Papers from the seminar held in Palaiseau, October 1981–January 1982; Astérisque No. 126 (1985) (1985). MR**785216**- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven,
*Compact complex surfaces*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR**2030225**, DOI 10.1007/978-3-642-57739-0 - Ciprian Borcea,
*$K3$ surfaces and complex multiplication*, Rev. Roumaine Math. Pures Appl.**31**(1986), no. 6, 499–505. MR**856201** - Tom Bridgeland and Antony Maciocia,
*Complex surfaces with equivalent derived categories*, Math. Z.**236**(2001), no. 4, 677–697. MR**1827500**, DOI 10.1007/PL00004847 - I. V. Dolgachev,
*Mirror symmetry for lattice polarized $K3$ surfaces*, J. Math. Sci.**81**(1996), no. 3, 2599–2630. Algebraic geometry, 4. MR**1420220**, DOI 10.1007/BF02362332 - Brendan Hassett,
*Special cubic fourfolds*, Compositio Math.**120**(2000), no. 1, 1–23. MR**1738215**, DOI 10.1023/A:1001706324425 - Shinobu Hosono, Bong H. Lian, Keiji Oguiso, and Shing-Tung Yau,
*Fourier-Mukai number of a K3 surface*, Algebraic structures and moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc., Providence, RI, 2004, pp. 177–192. MR**2096145**, DOI 10.1090/crmp/038/08 - D. R. Morrison,
*On $K3$ surfaces with large Picard number*, Invent. Math.**75**(1984), no. 1, 105–121. MR**728142**, DOI 10.1007/BF01403093 - Shigeru Mukai,
*Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves*, Nagoya Math. J.**81**(1981), 153–175. MR**607081** - S. Mukai,
*On the moduli space of bundles on $K3$ surfaces. I*, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413. MR**893604** - Shigeru Mukai,
*Duality of polarized $K3$ surfaces*, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 311–326. MR**1714828**, DOI 10.1017/CBO9780511721540.012 - V.V. Nikulin,
*Integral symmetric bilinear forms and some of their applications*, Math. USSR Izvestija**14**(1980), 103–167. - V.V. Nikulin,
*Correspondences of a K3 surfaces with itself via moduli of sheaves. I*, math.AG/0609233. - Keiji Oguiso,
*K3 surfaces via almost-primes*, Math. Res. Lett.**9**(2002), no. 1, 47–63. MR**1892313**, DOI 10.4310/MRL.2002.v9.n1.a4 - D. O. Orlov,
*Equivalences of derived categories and $K3$ surfaces*, J. Math. Sci. (New York)**84**(1997), no. 5, 1361–1381. Algebraic geometry, 7. MR**1465519**, DOI 10.1007/BF02399195 - B. Saint-Donat,
*Projective models of $K-3$ surfaces*, Amer. J. Math.**96**(1974), 602–639. MR**364263**, DOI 10.2307/2373709 - Francesco Scattone,
*On the compactification of moduli spaces for algebraic $K3$ surfaces*, Mem. Amer. Math. Soc.**70**(1987), no. 374, x+86. MR**912636**, DOI 10.1090/memo/0374 - Paolo Stellari,
*Some remarks about the FM-partners of $K3$ surfaces with Picard numbers 1 and 2*, Geom. Dedicata**108**(2004), 1–13. MR**2112663**, DOI 10.1007/s10711-004-9291-7 - Hans Sterk,
*Finiteness results for algebraic $K3$ surfaces*, Math. Z.**189**(1985), no. 4, 507–513. MR**786280**, DOI 10.1007/BF01168156 - Joachim Wehler,
*$K3$-surfaces with Picard number $2$*, Arch. Math. (Basel)**50**(1988), no. 1, 73–82. MR**925498**, DOI 10.1007/BF01313498

## Additional Information

**Paolo Stellari**- Affiliation: Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milano, Italy
- Email: Paolo.Stellari@mat.unimi.it
- Received by editor(s): September 28, 2006
- Received by editor(s) in revised form: March 13, 2007
- Published electronically: July 24, 2008
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**360**(2008), 6631-6642 - MSC (2000): Primary 14J28, 14J10
- DOI: https://doi.org/10.1090/S0002-9947-08-04512-1
- MathSciNet review: 2434303