Well-posedness for the Kadomtsev-Petviashvili II equation and generalisations
HTML articles powered by AMS MathViewer
- by Martin Hadac PDF
- Trans. Amer. Math. Soc. 360 (2008), 6555-6572 Request permission
Abstract:
We show the local in time well-posedness of the Cauchy problem for the Kadomtsev-Petviashvili II equation for initial data in the non-isotropic Sobolev space $H^{s_1,s_2}(\mathbb {R}^2)$ with $s_1>-\frac 12$ and $s_2\geq 0$. On the $H^{s_1,0}(\mathbb {R}^2)$ scale this result includes the full subcritical range without any additional low frequency assumption on the initial data. More generally, we prove the local in time well-posedness of the Cauchy problem for the following generalisation of the KP II equation: \[ (u_t - |D_x|^\alpha u_x + (u^2)_x)_x + u_{yy} = 0, \quad u(0) = u_0, \] for $\frac 43<\alpha \leq 6$, $s_1>\max (1-\frac 34 \alpha ,\frac 14-\frac 38 \alpha )$, $s_2\geq 0$ and $u_0\in H^{s_1,s_2}(\mathbb {R}^2)$. We deduce global well-posedness for $s_1\geq 0$, $s_2=0$ and real valued initial data.References
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, DOI 10.1007/BF01896020
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, DOI 10.1007/BF01896020
- J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal. 3 (1993), no. 4, 315–341. MR 1223434, DOI 10.1007/BF01896259
- Jean Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain), Astérisque 237 (1996), Exp. No. 796, 4, 163–187 (French, with French summary). Séminaire Bourbaki, Vol. 1994/95. MR 1423623
- Rafael José Iório Jr. and Wagner Vieira Leite Nunes, On equations of KP-type, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 4, 725–743. MR 1635416, DOI 10.1017/S0308210500021740
- Pedro Isaza and Jorge Mejía, Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations 26 (2001), no. 5-6, 1027–1054. MR 1843294, DOI 10.1081/PDE-100002387
- Pedro Isaza, Juan López, and Jorge Mejía, Cauchy problem for the fifth order Kadomtsev-Petviashvili (KPII) equation, Commun. Pure Appl. Anal. 5 (2006), no. 4, 887–905. MR 2246014, DOI 10.3934/cpaa.2006.5.887
- B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys., Dokl. 15 (1970), 539–541 (English. Russian original).
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1, 33–69. MR 1101221, DOI 10.1512/iumj.1991.40.40003
- C. E. Kenig and S. N. Ziesler, Local well posedness for modified Kadomstev-Petviashvili equations, Differential Integral Equations 18 (2005), no. 10, 1111–1146. MR 2162626
- L. Molinet, J. C. Saut, and N. Tzvetkov, Remarks on the mass constraint for KP type equations, preprint, arXiv:math.AP/0603303, 2006.
- Jean-Claude Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J. 42 (1993), no. 3, 1011–1026. MR 1254130, DOI 10.1512/iumj.1993.42.42047
- J. C. Saut and N. Tzvetkov, The Cauchy problem for higher-order KP equations, J. Differential Equations 153 (1999), no. 1, 196–222. MR 1682263, DOI 10.1006/jdeq.1998.3534
- J. C. Saut and N. Tzvetkov, The Cauchy problem for the fifth order KP equations, J. Math. Pures Appl. (9) 79 (2000), no. 4, 307–338 (English, with English and French summaries). MR 1753060, DOI 10.1016/S0021-7824(00)00156-2
- Hideo Takaoka, Global well-posedness for the Kadomtsev-Petviashvili II equation, Discrete Contin. Dynam. Systems 6 (2000), no. 2, 483–499. MR 1739371, DOI 10.3934/dcds.2000.6.483
- Hideo Takaoka, Well-posedness for the Kadomtsev-Petviashvili II equation, Adv. Differential Equations 5 (2000), no. 10-12, 1421–1443. MR 1785680
- H. Takaoka and N. Tzvetkov, On the local regularity of the Kadomtsev-Petviashvili-II equation, Internat. Math. Res. Notices 2 (2001), 77–114. MR 1810481, DOI 10.1155/S1073792801000058
- Nickolay Tzvetkov, On the Cauchy problem for Kadomtsev-Petviashvili equation, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1367–1397. MR 1697491, DOI 10.1080/03605309908821468
- N. Tzvetkov, Global low-regularity solutions for Kadomtsev-Petviashvili equation, Differential Integral Equations 13 (2000), no. 10-12, 1289–1320. MR 1787069
Additional Information
- Martin Hadac
- Affiliation: Mathematical Institute of the University of Bonn, Beringstraße 1, D-53115 Bonn, Germany
- Email: hadac@math.uni-bonn.de
- Received by editor(s): January 22, 2007
- Published electronically: July 22, 2008
- Additional Notes: The research for this work was mainly carried out while the author was employed at the Department of Mathematics of the University of Dortmund.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 6555-6572
- MSC (2000): Primary 35Q53; Secondary 35B30
- DOI: https://doi.org/10.1090/S0002-9947-08-04515-7
- MathSciNet review: 2434299