Saari’s homographic conjecture of the three-body problem
HTML articles powered by AMS MathViewer
- by Florin Diacu, Toshiaki Fujiwara, Ernesto Pérez-Chavela and Manuele Santoprete PDF
- Trans. Amer. Math. Soc. 360 (2008), 6447-6473 Request permission
Abstract:
Saari’s homographic conjecture, which extends a classical statement proposed by Donald Saari in 1970, claims that solutions of the Newtonian $n$-body problem with constant configurational measure are homographic. In other words, if the mutual distances satisfy a certain relationship, the configuration of the particle system may change size and position but not shape. We prove this conjecture for large sets of initial conditions in three-body problems given by homogeneous potentials, including the Newtonian one. Some of our results are true for $n\ge 3$.References
- Alain Albouy and Alain Chenciner, Le problème des $n$ corps et les distances mutuelles, Invent. Math. 131 (1998), no. 1, 151–184 (French). MR 1489897, DOI 10.1007/s002220050200
- A. Albouy and F. Yanning, Euler configurations and quasi-polynomial systems, preprint (2006) arXiv:math-ph/0603075
- Jean Chazy, Sur l’allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment, Ann. Sci. École Norm. Sup. (3) 39 (1922), 29–130 (French). MR 1509241
- A. Chenciner, Introduction to the $N$-body problem, preprint (1997), http://www.bdl.fr/ Equipes/ASD/preprints/prep.1997/Ravello.1997.pdf
- Alain Chenciner and Richard Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math. (2) 152 (2000), no. 3, 881–901. MR 1815704, DOI 10.2307/2661357
- Florin Diacu, Ernesto Pérez-Chavela, and Manuele Santoprete, Saari’s conjecture for the collinear $n$-body problem, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4215–4223. MR 2159707, DOI 10.1090/S0002-9947-04-03606-2
- Toshiaki Fujiwara, Hiroshi Fukuda, and Hiroshi Ozaki, Choreographic three bodies on the lemniscate, J. Phys. A 36 (2003), no. 11, 2791–2800. MR 1965292, DOI 10.1088/0305-4470/36/11/310
- Toshiaki Fujiwara, Hiroshi Fukuda, and Hiroshi Ozaki, Evolution of the moment of inertia of three-body figure-eight choreography, J. Phys. A 36 (2003), no. 42, 10537–10549. MR 2024911, DOI 10.1088/0305-4470/36/42/009
- Toshiaki Fujiwara, Hiroshi Fukuda, Atsushi Kameyama, Hiroshi Ozaki, and Michio Yamada, Synchronized similar triangles for three-body orbits with zero angular momentum, J. Phys. A 37 (2004), no. 44, 10571–10584. MR 2098052, DOI 10.1088/0305-4470/37/44/008
- Marshall Hampton and Richard Moeckel, Finiteness of relative equilibria of the four-body problem, Invent. Math. 163 (2006), no. 2, 289–312. MR 2207019, DOI 10.1007/s00222-005-0461-0
- J. Llibre and E. Piña, Saari’s conjecture holds for the planar 3-body problem, preprint (2002).
- Christopher McCord, Saari’s conjecture for the planar three-body problem with equal masses, Celestial Mech. Dynam. Astronom. 89 (2004), no. 2, 99–118. MR 2086184, DOI 10.1023/B:CELE.0000034500.64355.f9
- Richard Moeckel, Some qualitative features of the three-body problem, Hamiltonian dynamical systems (Boulder, CO, 1987) Contemp. Math., vol. 81, Amer. Math. Soc., Providence, RI, 1988, pp. 1–22. MR 986254, DOI 10.1090/conm/081/986254
- Richard Moeckel, A computer-assisted proof of Saari’s conjecture for the planar three-body problem, Trans. Amer. Math. Soc. 357 (2005), no. 8, 3105–3117. MR 2135737, DOI 10.1090/S0002-9947-04-03527-5
- R. Moeckel, A proof of Saari’s conjecture for the three-body problem in $R^d$, preprint (2005).
- Richard Montgomery, The $N$-body problem, the braid group, and action-minimizing periodic solutions, Nonlinearity 11 (1998), no. 2, 363–376. MR 1610784, DOI 10.1088/0951-7715/11/2/011
- F. R. Moulton, The straight line solutions of the problem of $n$ bodies, Ann. of Math. (2) 12 (1910), no. 1, 1–17. MR 1503509, DOI 10.2307/2007159
- Julian I. Palmore, Relative equilibria and the virial theorem, Celestial Mech. 19 (1979), no. 2, 167–171. MR 529313, DOI 10.1007/BF01796089
- Julian I. Palmore, Saari’s conjecture revisited, Celestial Mech. 25 (1981), no. 1, 79–80. MR 648650, DOI 10.1007/BF01301808
- Gareth E. Roberts, Some counterexamples to a generalized Saari’s conjecture, Trans. Amer. Math. Soc. 358 (2006), no. 1, 251–265. MR 2171232, DOI 10.1090/S0002-9947-05-03697-4
- D. Saari, On bounded solutions of the n-body problem, Periodic Orbits, Stability and Resonances, G.E.O., Giacaglia (Ed.), D. Riedel, Dordrecht, 76-81 (1970).
- Donald G. Saari, From rotations and inclinations to zero configurational velocity surfaces. I. A natural rotating coordinate system, Celestial Mech. 33 (1984), no. 4, 299–318. MR 777381, DOI 10.1007/BF01241046
- Donald G. Saari, Collisions, rings, and other Newtonian $N$-body problems, CBMS Regional Conference Series in Mathematics, vol. 104, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005. MR 2139425, DOI 10.1090/cbms/104
- Manuele Santoprete, A counterexample to a generalized Saari’s conjecture with a continuum of central configurations, Celestial Mech. Dynam. Astronom. 89 (2004), no. 4, 357–364. MR 2104899, DOI 10.1023/B:CELE.0000043575.00445.21
- Tanya Schmah and Cristina Stoica, Saari’s conjecture is true for generic vector fields, Trans. Amer. Math. Soc. 359 (2007), no. 9, 4429–4448. MR 2309192, DOI 10.1090/S0002-9947-07-04330-9
- Aurel Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, vol. 5, Princeton University Press, Princeton, N. J., 1941. MR 0005824
Additional Information
- Florin Diacu
- Affiliation: Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
- Email: diacu@math.uvic.ca
- Toshiaki Fujiwara
- Affiliation: College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
- Email: fujiwara@clas.kitasato-u.ac.jp
- Ernesto Pérez-Chavela
- Affiliation: Departamento de Matemáticas, UAM–Iztapalapa, A.P. 55–534, 09340 Iztapalapa, Mexico, D.F., Mexico
- Email: epc@xanum.uam.mx
- Manuele Santoprete
- Affiliation: Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada
- Email: msantoprete@wlu.ca
- Received by editor(s): November 27, 2006
- Published electronically: May 29, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 6447-6473
- MSC (2000): Primary 70F10, 70H05
- DOI: https://doi.org/10.1090/S0002-9947-08-04517-0
- MathSciNet review: 2434294