## Large deviations for nonuniformly hyperbolic systems

HTML articles powered by AMS MathViewer

- by Ian Melbourne and Matthew Nicol PDF
- Trans. Amer. Math. Soc.
**360**(2008), 6661-6676 Request permission

## Abstract:

We obtain large deviation estimates for a large class of nonuniformly hyperbolic systems: namely those modelled by Young towers with summable decay of correlations. In the case of exponential decay of correlations, we obtain exponential large deviation estimates given by a rate function. In the case of polynomial decay of correlations, we obtain polynomial large deviation estimates, and exhibit examples where these estimates are essentially optimal.

In contrast with many treatments of large deviations, our methods do not rely on thermodynamic formalism. Hence, for Hölder observables we are able to obtain exponential estimates in situations where the space of equilibrium measures is not known to be a singleton, as well as polynomial estimates in situations where there is not a unique equilibrium measure.

## References

- Vítor Araújo,
*Large deviations bound for semiflows over a non-uniformly expanding base*, Bull. Braz. Math. Soc. (N.S.)**38**(2007), no. 3, 335–376. MR**2344203**, DOI 10.1007/s00574-007-0049-y - V. Araújo and M. J. Pacifico,
*Large deviations for non-uniformly expanding maps*, J. Stat. Phys.**125**(2006), no. 2, 415–457. MR**2270016**, DOI 10.1007/s10955-006-9183-y - Péter Bálint and Sébastien Gouëzel,
*Limit theorems in the stadium billiard*, Comm. Math. Phys.**263**(2006), no. 2, 461–512. MR**2207652**, DOI 10.1007/s00220-005-1511-6 - Xavier Bressaud,
*Expanding interval maps with intermittent behaviour, physical measures and time scales*, Discrete Contin. Dyn. Syst.**11**(2004), no. 2-3, 517–546. MR**2083428**, DOI 10.3934/dcds.2004.11.517 - N. Chernov,
*Decay of correlations and dispersing billiards*, J. Statist. Phys.**94**(1999), no. 3-4, 513–556. MR**1675363**, DOI 10.1023/A:1004581304939 - N. Chernov and H.-K. Zhang,
*Billiards with polynomial mixing rates*, Nonlinearity**18**(2005), no. 4, 1527–1553. MR**2150341**, DOI 10.1088/0951-7715/18/4/006 - N. Chernov and H.-K. Zhang,
*A family of chaotic billiards with variable mixing rates*, Stoch. Dyn.**5**(2005), no. 4, 535–553. MR**2185504**, DOI 10.1142/S0219493705001572 - Amir Dembo and Ofer Zeitouni,
*Large deviations techniques and applications*, 2nd ed., Applications of Mathematics (New York), vol. 38, Springer-Verlag, New York, 1998. MR**1619036**, DOI 10.1007/978-1-4612-5320-4 - Manfred Denker,
*Probability theory for rational maps*, Probability theory and mathematical statistics (St. Petersburg, 1993) Gordon and Breach, Amsterdam, 1996, pp. 29–40. MR**1661691** - Richard Durrett,
*Probability: theory and examples*, 2nd ed., Duxbury Press, Belmont, CA, 1996. MR**1609153** - Richard S. Ellis,
*Entropy, large deviations, and statistical mechanics*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 271, Springer-Verlag, New York, 1985. MR**793553**, DOI 10.1007/978-1-4613-8533-2 - Michael Field, Ian Melbourne, and Andrew Török,
*Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions*, Ergodic Theory Dynam. Systems**23**(2003), no. 1, 87–110. MR**1971198**, DOI 10.1017/S0143385702000901 - P. Gaspard and X.-J. Wang,
*Sporadicity: between periodic and chaotic dynamical behaviors*, Proc. Nat. Acad. Sci. U.S.A.**85**(1988), no. 13, 4591–4595. MR**949187**, DOI 10.1073/pnas.85.13.4591 - J. Grigull. Grosse abweichungen und Fluktuationen für Gleichgewichtsmasse rationaler Ablidungen. Dissertation, Univ. Göttingen, 1993.
- Hubert Hennion and Loïc Hervé,
*Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness*, Lecture Notes in Mathematics, vol. 1766, Springer-Verlag, Berlin, 2001. MR**1862393**, DOI 10.1007/b87874 - Huyi Hu,
*Decay of correlations for piecewise smooth maps with indifferent fixed points*, Ergodic Theory Dynam. Systems**24**(2004), no. 2, 495–524. MR**2054191**, DOI 10.1017/S0143385703000671 - Gerhard Keller and Tomasz Nowicki,
*Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps*, Comm. Math. Phys.**149**(1992), no. 1, 31–69. MR**1182410** - Yuri Kifer,
*Large deviations in dynamical systems and stochastic processes*, Trans. Amer. Math. Soc.**321**(1990), no. 2, 505–524. MR**1025756**, DOI 10.1090/S0002-9947-1990-1025756-7 - Emmanuel Lesigne and Dalibor Volný,
*Large deviations for martingales*, Stochastic Process. Appl.**96**(2001), no. 1, 143–159. MR**1856684**, DOI 10.1016/S0304-4149(01)00112-0 - Carlangelo Liverani, Benoît Saussol, and Sandro Vaienti,
*A probabilistic approach to intermittency*, Ergodic Theory Dynam. Systems**19**(1999), no. 3, 671–685. MR**1695915**, DOI 10.1017/S0143385799133856 - Artur O. Lopes,
*Entropy and large deviation*, Nonlinearity**3**(1990), no. 2, 527–546. MR**1054587** - Roberto Markarian,
*Billiards with polynomial decay of correlations*, Ergodic Theory Dynam. Systems**24**(2004), no. 1, 177–197. MR**2041267**, DOI 10.1017/S0143385703000270 - Ian Melbourne and Matthew Nicol,
*Almost sure invariance principle for nonuniformly hyperbolic systems*, Comm. Math. Phys.**260**(2005), no. 1, 131–146. MR**2175992**, DOI 10.1007/s00220-005-1407-5 - I. Melbourne and M. Nicol. A vector-valued almost sure invariance principle for hyperbolic dynamical systems. Preprint, 2006.
- Ian Melbourne and Andrei Török,
*Central limit theorems and invariance principles for time-one maps of hyperbolic flows*, Comm. Math. Phys.**229**(2002), no. 1, 57–71. MR**1917674**, DOI 10.1007/s00220-002-0676-5 - Ian Melbourne and Andrei Török,
*Statistical limit theorems for suspension flows*, Israel J. Math.**144**(2004), 191–209. MR**2121540**, DOI 10.1007/BF02916712 - Florence Merlevède, Magda Peligrad, and Sergey Utev,
*Recent advances in invariance principles for stationary sequences*, Probab. Surv.**3**(2006), 1–36. MR**2206313**, DOI 10.1214/154957806100000202 - Steven Orey and Stephan Pelikan,
*Large deviation principles for stationary processes*, Ann. Probab.**16**(1988), no. 4, 1481–1495. MR**958198** - Mark Pollicott, Richard Sharp, and Michiko Yuri,
*Large deviations for maps with indifferent fixed points*, Nonlinearity**11**(1998), no. 4, 1173–1184. MR**1632614**, DOI 10.1088/0951-7715/11/4/023 - Yves Pomeau and Paul Manneville,
*Intermittent transition to turbulence in dissipative dynamical systems*, Comm. Math. Phys.**74**(1980), no. 2, 189–197. MR**576270** - Emmanuel Rio,
*Théorie asymptotique des processus aléatoires faiblement dépendants*, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 31, Springer-Verlag, Berlin, 2000 (French). MR**2117923** - V. A. Rohlin,
*Exact endomorphisms of a Lebesgue space*, Izv. Akad. Nauk SSSR Ser. Mat.**25**(1961), 499–530 (Russian). MR**0143873** - Ja. G. Sinaĭ,
*Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards*, Uspehi Mat. Nauk**25**(1970), no. 2 (152), 141–192 (Russian). MR**0274721** - Simon Waddington,
*Large deviation asymptotics for Anosov flows*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**13**(1996), no. 4, 445–484. MR**1404318**, DOI 10.1016/S0294-1449(16)30110-X - Lai-Sang Young,
*Large deviations in dynamical systems*, Trans. Amer. Math. Soc.**318**(1990), no. 2, 525–543. MR**975689**, DOI 10.1090/S0002-9947-1990-0975689-7 - Lai-Sang Young,
*Statistical properties of dynamical systems with some hyperbolicity*, Ann. of Math. (2)**147**(1998), no. 3, 585–650. MR**1637655**, DOI 10.2307/120960 - Lai-Sang Young,
*Recurrence times and rates of mixing*, Israel J. Math.**110**(1999), 153–188. MR**1750438**, DOI 10.1007/BF02808180

## Additional Information

**Ian Melbourne**- Affiliation: Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
- MR Author ID: 123300
- Email: ism@math.uh.edu
**Matthew Nicol**- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
- MR Author ID: 350236
- Email: nicol@math.uh.edu
- Received by editor(s): December 7, 2006
- Received by editor(s) in revised form: March 14, 2007
- Published electronically: June 4, 2008
- Additional Notes: The research of the first author was supported in part by EPSRC Grant EP/D055520/1 and a Leverhulme Research Fellowship.

The research of the second author was supported in part by NSF grants DMS 0600927 and DMS-0607345

The authors would like to thank the Universities of Houston and Surrey respectively for hospitality during part of this research. - © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**360**(2008), 6661-6676 - MSC (2000): Primary 37D25, 37A50, 60F10
- DOI: https://doi.org/10.1090/S0002-9947-08-04520-0
- MathSciNet review: 2434305