Characterization of LIL behavior in Banach space
HTML articles powered by AMS MathViewer
- by Uwe Einmahl and Deli Li PDF
- Trans. Amer. Math. Soc. 360 (2008), 6677-6693 Request permission
Abstract:
In a recent paper by the authors a general result characterizing two-sided LIL behavior for real valued random variables has been established. In this paper we look at the corresponding problem in the Banach space setting. We show that there are analogous results in this more general setting. In particular, we provide a necessary and sufficient condition for LIL behavior with respect to sequences of the form $\sqrt {nh(n)}$, where $h$ is from a suitable subclass of the positive, non-decreasing slowly varying functions. To prove these results we have to use a different method. One of our main tools is an improved Fuk-Nagaev type inequality in Banach space which should be of independent interest.References
- A. de Acosta, J. Kuelbs, and M. Ledoux, An inequality for the law of the iterated logarithm, Probability in Banach spaces, IV (Oberwolfach, 1982) Lecture Notes in Math., vol. 990, Springer, Berlin, 1983, pp. 1–29. MR 707506, DOI 10.1007/BFb0064260
- Olivier Bousquet, A Bennett concentration inequality and its application to suprema of empirical processes, C. R. Math. Acad. Sci. Paris 334 (2002), no. 6, 495–500 (English, with English and French summaries). MR 1890640, DOI 10.1016/S1631-073X(02)02292-6
- Uwe Einmahl, Toward a general law of the iterated logarithm in Banach space, Ann. Probab. 21 (1993), no. 4, 2012–2045. MR 1245299
- Uwe Einmahl, A generalization of Strassen’s functional LIL, J. Theoret. Probab. 20 (2007), no. 4, 901–915. MR 2359061, DOI 10.1007/s10959-007-0091-0
- Uwe Einmahl and Deli Li, Some results on two-sided LIL behavior, Ann. Probab. 33 (2005), no. 4, 1601–1624. MR 2150200, DOI 10.1214/009117905000000198
- William Feller, An extension of the law of the iterated logarithm to variables without variance, J. Math. Mech. 18 (1968/1969), 343–355. MR 0233399, DOI 10.1512/iumj.1969.18.18027
- M. J. Klass, Toward a universal law of the iterated logarithm. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 2, 165–178. MR 415742, DOI 10.1007/BF00533999
- Michael J. Klass, Toward a universal law of the iterated logarithm. II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 39 (1977), no. 2, 151–165. MR 448502, DOI 10.1007/BF00535183
- T. Klein and E. Rio, Concentration around the mean for maxima of empirical processes, Ann. Probab. 33 (2005), no. 3, 1060–1077. MR 2135312, DOI 10.1214/009117905000000044
- J. Kuelbs, The LIL when $X$ is in the domain of attraction of a Gaussian law, Ann. Probab. 13 (1985), no. 3, 825–859. MR 799424
- Michel Ledoux, On Talagrand’s deviation inequalities for product measures, ESAIM Probab. Statist. 1 (1995/97), 63–87. MR 1399224, DOI 10.1051/ps:1997103
- M. Ledoux and M. Talagrand, Characterization of the law of the iterated logarithm in Banach spaces, Ann. Probab. 16 (1988), no. 3, 1242–1264. MR 942766
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- Pascal Massart, About the constants in Talagrand’s concentration inequalities for empirical processes, Ann. Probab. 28 (2000), no. 2, 863–884. MR 1782276, DOI 10.1214/aop/1019160263
- Valentin V. Petrov, Limit theorems of probability theory, Oxford Studies in Probability, vol. 4, The Clarendon Press, Oxford University Press, New York, 1995. Sequences of independent random variables; Oxford Science Publications. MR 1353441
- William E. Pruitt, General one-sided laws of the iterated logarithm, Ann. Probab. 9 (1981), no. 1, 1–48. MR 606797
- Emmanuel Rio, Une inégalité de Bennett pour les maxima de processus empiriques, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 6, 1053–1057 (French, with English and French summaries). En l’honneur de J. Bretagnolle, D. Dacunha-Castelle, I. Ibragimov. MR 1955352, DOI 10.1016/S0246-0203(02)01122-6
- M. Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab. 22 (1994), no. 1, 28–76. MR 1258865
Additional Information
- Uwe Einmahl
- Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Email: ueinmahl@vub.ac.be
- Deli Li
- Affiliation: Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1
- Email: dli@lakeheadu.ca
- Received by editor(s): October 16, 2006
- Received by editor(s) in revised form: April 1, 2007
- Published electronically: July 24, 2008
- Additional Notes: The first author’s research was supported in part by an FWO Vlaanderen grant.
The second author’s research was supported in part by an NSERC Canada grant - © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 360 (2008), 6677-6693
- MSC (2000): Primary 60B12, 60F15; Secondary 60G50, 60J15
- DOI: https://doi.org/10.1090/S0002-9947-08-04522-4
- MathSciNet review: 2434306