Rigidity of graded regular algebras
HTML articles powered by AMS MathViewer
- by E. Kirkman, J. Kuzmanovich and J. J. Zhang PDF
- Trans. Amer. Math. Soc. 360 (2008), 6331-6369 Request permission
Abstract:
We prove a graded version of Alev-Polo’s rigidity theorem: the homogenization of the universal enveloping algebra of a semisimple Lie algebra and the Rees ring of the Weyl algebras $A_n(k)$ cannot be isomorphic to their fixed subring under any finite group action. We also show the same result for other classes of graded regular algebras including the Sklyanin algebras.References
- J. Alev and F. Dumas, Sur les invariants des algèbres de Weyl et de leurs corps de fractions, Rings, Hopf algebras, and Brauer groups (Antwerp/Brussels, 1996) Lecture Notes in Pure and Appl. Math., vol. 197, Dekker, New York, 1998, pp. 1–10 (French). MR 1615833
- J. Alev and F. Dumas, Invariants du corps de Weyl sous l’action de groupes finis, Comm. Algebra 25 (1997), no. 5, 1655–1672 (French, with English summary). MR 1444026, DOI 10.1080/00927879708825943
- Jacques Alev and Patrick Polo, A rigidity theorem for finite group actions on enveloping algebras of semisimple Lie algebras, Adv. Math. 111 (1995), no. 2, 208–226. MR 1318528, DOI 10.1006/aima.1995.1022
- Michael Artin and William F. Schelter, Graded algebras of global dimension $3$, Adv. in Math. 66 (1987), no. 2, 171–216. MR 917738, DOI 10.1016/0001-8708(87)90034-X
- M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 33–85. MR 1086882
- M. Artin, J. Tate, and M. Van den Bergh, Modules over regular algebras of dimension $3$, Invent. Math. 106 (1991), no. 2, 335–388. MR 1128218, DOI 10.1007/BF01243916
- M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287. MR 1304753, DOI 10.1006/aima.1994.1087
- Georgia Benkart and Tom Roby, Down-up algebras, J. Algebra 209 (1998), no. 1, 305–344. MR 1652138, DOI 10.1006/jabr.1998.7511
- D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society Lecture Note Series, vol. 190, Cambridge University Press, Cambridge, 1993. MR 1249931, DOI 10.1017/CBO9780511565809
- Allan Clark and John Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425–434. MR 367979
- H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. (2) 35 (1934), no. 3, 588–621. MR 1503182, DOI 10.2307/1968753
- N. L. Gordeev, Invariants of linear groups generated by matrices with two eigenvalues different from one, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 114 (1982), 120–130, 219 (Russian). Modules and algebraic groups. MR 669563
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
- Naihuan Jing and James J. Zhang, On the trace of graded automorphisms, J. Algebra 189 (1997), no. 2, 353–376. MR 1438180, DOI 10.1006/jabr.1996.6896
- Peter Jørgensen and James J. Zhang, Gourmet’s guide to Gorensteinness, Adv. Math. 151 (2000), no. 2, 313–345. MR 1758250, DOI 10.1006/aima.1999.1897
- Anthony Joseph, Coxeter structure and finite group action, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995) Sémin. Congr., vol. 2, Soc. Math. France, Paris, 1997, pp. 185–219 (English, with English and French summaries). MR 1601143
- Victor Kac and Keiichi Watanabe, Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 221–223. MR 640951, DOI 10.1090/S0273-0979-1982-14989-8
- E. Kirkman, J. Kuzmanovich and J.J. Zhang, A Shephard-Todd-Chevalley theorem for noncommutative regular algebras, in preparation.
- E. Kirkman, J. Kuzmanovich and J.J. Zhang, Hopf algebra (co)-actions on Artin-Schelter regular algebras, in preparation.
- Ellen Kirkman, Ian M. Musson, and D. S. Passman, Noetherian down-up algebras, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3161–3167. MR 1610796, DOI 10.1090/S0002-9939-99-04926-6
- Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834, DOI 10.1090/gsm/022
- Thierry Levasseur, Some properties of noncommutative regular graded rings, Glasgow Math. J. 34 (1992), no. 3, 277–300. MR 1181768, DOI 10.1017/S0017089500008843
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Richard A. Mollin, Algebraic number theory, CRC Press Series on Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1682930
- Susan Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Mathematics, vol. 818, Springer, Berlin, 1980. MR 590245
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- Z. Reichstein, D. Rogalski, and J. J. Zhang, Projectively simple rings, Adv. Math. 203 (2006), no. 2, 365–407. MR 2227726, DOI 10.1016/j.aim.2005.04.013
- G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. MR 59914, DOI 10.4153/cjm-1954-028-3
- S. P. Smith, Can the Weyl algebra be a fixed ring?, Proc. Amer. Math. Soc. 107 (1989), no. 3, 587–589. MR 962247, DOI 10.1090/S0002-9939-1989-0962247-0
- S. Paul Smith, Some finite-dimensional algebras related to elliptic curves, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 315–348. MR 1388568
- S. P. Smith and J. T. Stafford, Regularity of the four-dimensional Sklyanin algebra, Compositio Math. 83 (1992), no. 3, 259–289. MR 1175941
- Darin R. Stephenson and James J. Zhang, Growth of graded Noetherian rings, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1593–1605. MR 1371143, DOI 10.1090/S0002-9939-97-03752-0
- John Tate and Michel van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124 (1996), no. 1-3, 619–647. MR 1369430, DOI 10.1007/s002220050065
- James J. Zhang, Connected graded Gorenstein algebras with enough normal elements, J. Algebra 189 (1997), no. 2, 390–405. MR 1438182, DOI 10.1006/jabr.1996.6885
Additional Information
- E. Kirkman
- Affiliation: Department of Mathematics, Wake Forest University, P.O. Box 7388, Winston-Salem, North Carolina 27109
- MR Author ID: 101920
- Email: kirkman@wfu.edu
- J. Kuzmanovich
- Affiliation: Department of Mathematics, Wake Forest University, P.O. Box 7388, Winston-Salem, North Carolina 27109
- Email: kuz@wfu.edu
- J. J. Zhang
- Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195
- MR Author ID: 314509
- Email: zhang@math.washington.edu
- Received by editor(s): November 6, 2006
- Published electronically: June 26, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 360 (2008), 6331-6369
- MSC (2000): Primary 16E10, 16W30, 20J05
- DOI: https://doi.org/10.1090/S0002-9947-08-04571-6
- MathSciNet review: 2434290