## Rigidity of graded regular algebras

HTML articles powered by AMS MathViewer

- by E. Kirkman, J. Kuzmanovich and J. J. Zhang PDF
- Trans. Amer. Math. Soc.
**360**(2008), 6331-6369 Request permission

## Abstract:

We prove a graded version of Alev-Polo’s rigidity theorem: the homogenization of the universal enveloping algebra of a semisimple Lie algebra and the Rees ring of the Weyl algebras $A_n(k)$ cannot be isomorphic to their fixed subring under any finite group action. We also show the same result for other classes of graded regular algebras including the Sklyanin algebras.## References

- J. Alev and F. Dumas,
*Sur les invariants des algèbres de Weyl et de leurs corps de fractions*, Rings, Hopf algebras, and Brauer groups (Antwerp/Brussels, 1996) Lecture Notes in Pure and Appl. Math., vol. 197, Dekker, New York, 1998, pp. 1–10 (French). MR**1615833** - J. Alev and F. Dumas,
*Invariants du corps de Weyl sous l’action de groupes finis*, Comm. Algebra**25**(1997), no. 5, 1655–1672 (French, with English summary). MR**1444026**, DOI 10.1080/00927879708825943 - Jacques Alev and Patrick Polo,
*A rigidity theorem for finite group actions on enveloping algebras of semisimple Lie algebras*, Adv. Math.**111**(1995), no. 2, 208–226. MR**1318528**, DOI 10.1006/aima.1995.1022 - Michael Artin and William F. Schelter,
*Graded algebras of global dimension $3$*, Adv. in Math.**66**(1987), no. 2, 171–216. MR**917738**, DOI 10.1016/0001-8708(87)90034-X - M. Artin, J. Tate, and M. Van den Bergh,
*Some algebras associated to automorphisms of elliptic curves*, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 33–85. MR**1086882** - M. Artin, J. Tate, and M. Van den Bergh,
*Modules over regular algebras of dimension $3$*, Invent. Math.**106**(1991), no. 2, 335–388. MR**1128218**, DOI 10.1007/BF01243916 - M. Artin and J. J. Zhang,
*Noncommutative projective schemes*, Adv. Math.**109**(1994), no. 2, 228–287. MR**1304753**, DOI 10.1006/aima.1994.1087 - Georgia Benkart and Tom Roby,
*Down-up algebras*, J. Algebra**209**(1998), no. 1, 305–344. MR**1652138**, DOI 10.1006/jabr.1998.7511 - D. J. Benson,
*Polynomial invariants of finite groups*, London Mathematical Society Lecture Note Series, vol. 190, Cambridge University Press, Cambridge, 1993. MR**1249931**, DOI 10.1017/CBO9780511565809 - Allan Clark and John Ewing,
*The realization of polynomial algebras as cohomology rings*, Pacific J. Math.**50**(1974), 425–434. MR**367979** - H. S. M. Coxeter,
*Discrete groups generated by reflections*, Ann. of Math. (2)**35**(1934), no. 3, 588–621. MR**1503182**, DOI 10.2307/1968753 - N. L. Gordeev,
*Invariants of linear groups generated by matrices with two eigenvalues different from one*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**114**(1982), 120–130, 219 (Russian). Modules and algebraic groups. MR**669563** - G. H. Hardy and E. M. Wright,
*An introduction to the theory of numbers*, Oxford, at the Clarendon Press, 1954. 3rd ed. MR**0067125** - Naihuan Jing and James J. Zhang,
*On the trace of graded automorphisms*, J. Algebra**189**(1997), no. 2, 353–376. MR**1438180**, DOI 10.1006/jabr.1996.6896 - Peter Jørgensen and James J. Zhang,
*Gourmet’s guide to Gorensteinness*, Adv. Math.**151**(2000), no. 2, 313–345. MR**1758250**, DOI 10.1006/aima.1999.1897 - Anthony Joseph,
*Coxeter structure and finite group action*, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995) Sémin. Congr., vol. 2, Soc. Math. France, Paris, 1997, pp. 185–219 (English, with English and French summaries). MR**1601143** - Victor Kac and Keiichi Watanabe,
*Finite linear groups whose ring of invariants is a complete intersection*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 2, 221–223. MR**640951**, DOI 10.1090/S0273-0979-1982-14989-8 - E. Kirkman, J. Kuzmanovich and J.J. Zhang, A Shephard-Todd-Chevalley theorem for noncommutative regular algebras, in preparation.
- E. Kirkman, J. Kuzmanovich and J.J. Zhang, Hopf algebra (co)-actions on Artin-Schelter regular algebras, in preparation.
- Ellen Kirkman, Ian M. Musson, and D. S. Passman,
*Noetherian down-up algebras*, Proc. Amer. Math. Soc.**127**(1999), no. 11, 3161–3167. MR**1610796**, DOI 10.1090/S0002-9939-99-04926-6 - Günter R. Krause and Thomas H. Lenagan,
*Growth of algebras and Gelfand-Kirillov dimension*, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR**1721834**, DOI 10.1090/gsm/022 - Thierry Levasseur,
*Some properties of noncommutative regular graded rings*, Glasgow Math. J.**34**(1992), no. 3, 277–300. MR**1181768**, DOI 10.1017/S0017089500008843 - J. C. McConnell and J. C. Robson,
*Noncommutative Noetherian rings*, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR**934572** - Richard A. Mollin,
*Algebraic number theory*, CRC Press Series on Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR**1682930** - Susan Montgomery,
*Fixed rings of finite automorphism groups of associative rings*, Lecture Notes in Mathematics, vol. 818, Springer, Berlin, 1980. MR**590245** - Susan Montgomery,
*Hopf algebras and their actions on rings*, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR**1243637**, DOI 10.1090/cbms/082 - Z. Reichstein, D. Rogalski, and J. J. Zhang,
*Projectively simple rings*, Adv. Math.**203**(2006), no. 2, 365–407. MR**2227726**, DOI 10.1016/j.aim.2005.04.013 - G. C. Shephard and J. A. Todd,
*Finite unitary reflection groups*, Canad. J. Math.**6**(1954), 274–304. MR**59914**, DOI 10.4153/cjm-1954-028-3 - S. P. Smith,
*Can the Weyl algebra be a fixed ring?*, Proc. Amer. Math. Soc.**107**(1989), no. 3, 587–589. MR**962247**, DOI 10.1090/S0002-9939-1989-0962247-0 - S. Paul Smith,
*Some finite-dimensional algebras related to elliptic curves*, Representation theory of algebras and related topics (Mexico City, 1994) CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 315–348. MR**1388568** - S. P. Smith and J. T. Stafford,
*Regularity of the four-dimensional Sklyanin algebra*, Compositio Math.**83**(1992), no. 3, 259–289. MR**1175941** - Darin R. Stephenson and James J. Zhang,
*Growth of graded Noetherian rings*, Proc. Amer. Math. Soc.**125**(1997), no. 6, 1593–1605. MR**1371143**, DOI 10.1090/S0002-9939-97-03752-0 - John Tate and Michel van den Bergh,
*Homological properties of Sklyanin algebras*, Invent. Math.**124**(1996), no. 1-3, 619–647. MR**1369430**, DOI 10.1007/s002220050065 - James J. Zhang,
*Connected graded Gorenstein algebras with enough normal elements*, J. Algebra**189**(1997), no. 2, 390–405. MR**1438182**, DOI 10.1006/jabr.1996.6885

## Additional Information

**E. Kirkman**- Affiliation: Department of Mathematics, Wake Forest University, P.O. Box 7388, Winston-Salem, North Carolina 27109
- MR Author ID: 101920
- Email: kirkman@wfu.edu
**J. Kuzmanovich**- Affiliation: Department of Mathematics, Wake Forest University, P.O. Box 7388, Winston-Salem, North Carolina 27109
- Email: kuz@wfu.edu
**J. J. Zhang**- Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195
- MR Author ID: 314509
- Email: zhang@math.washington.edu
- Received by editor(s): November 6, 2006
- Published electronically: June 26, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**360**(2008), 6331-6369 - MSC (2000): Primary 16E10, 16W30, 20J05
- DOI: https://doi.org/10.1090/S0002-9947-08-04571-6
- MathSciNet review: 2434290