## Crystal bases and combinatorics of infinite rank quantum groups

HTML articles powered by AMS MathViewer

- by Cédric Lecouvey PDF
- Trans. Amer. Math. Soc.
**361**(2009), 297-329 Request permission

## Abstract:

The tensor powers of the vector representation associated to an infinite rank quantum group decompose into irreducible components with multiplicities independent of the infinite root system considered. Although the irreducible modules obtained in this way are not of highest weight, they admit a crystal basis and a canonical basis. This permits us in particular to obtain for each family of classical Lie algebras a Robinson-Schensted correspondence on biwords defined on infinite alphabets. We then depict a structure of bicrystal on these biwords. This RSK-correspondence yields also a plactic algebra and plactic Schur functions distinct for each infinite root system. Surprisingly, the algebras spanned by these plactic Schur functions are all isomorphic to the algebra of symmetric functions.## References

- Allan Berele,
*A Schensted-type correspondence for the symplectic group*, J. Combin. Theory Ser. A**43**(1986), no. 2, 320–328. MR**867655**, DOI 10.1016/0097-3165(86)90070-1 - V. I. Danilov, G. A. Koshevoy,
*Bi-crystal and*$(GL(V),GL(W))$*-duality*, RIMS no. 1458, 2004. - William Fulton,
*Young tableaux*, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR**1464693** - Jens Carsten Jantzen,
*Lectures on quantum groups*, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, RI, 1996. MR**1359532**, DOI 10.1090/gsm/006 - Naihuan Jing, Kailash C. Misra, and Masato Okado,
*$q$-wedge modules for quantized enveloping algebras of classical type*, J. Algebra**230**(2000), no. 2, 518–539. MR**1775802**, DOI 10.1006/jabr.2000.8325 - A. M. Hamel,
*Determinantal forms for symplectic and orthogonal Schur functions*, Canad. J. Math.**49**(1997), no. 2, 263–282. MR**1447491**, DOI 10.4153/CJM-1997-013-5 - V. G. Kac,
*Bombay Lectures on highest weight representations of infinite dimensional Lie algebras*, Advanced Series in Mathematical Physics Vol. 2, 1988. - Jin Hong and Seok-Jin Kang,
*Introduction to quantum groups and crystal bases*, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR**1881971**, DOI 10.1090/gsm/042 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - M. Kashiwara,
*On crystal bases of the $Q$-analogue of universal enveloping algebras*, Duke Math. J.**63**(1991), no. 2, 465–516. MR**1115118**, DOI 10.1215/S0012-7094-91-06321-0 - Masaki Kashiwara,
*On crystal bases*, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197. MR**1357199** - Masaki Kashiwara and Toshiki Nakashima,
*Crystal graphs for representations of the $q$-analogue of classical Lie algebras*, J. Algebra**165**(1994), no. 2, 295–345. MR**1273277**, DOI 10.1006/jabr.1994.1114 - Alain Lascoux,
*Double crystal graphs*, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 95–114. MR**1985724** - Alain Lascoux,
*Symmetric functions and combinatorial operators on polynomials*, CBMS Regional Conference Series in Mathematics, vol. 99, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003. MR**2017492**, DOI 10.1090/cbms/099 - Cédric Lecouvey,
*Schensted-type correspondence, plactic monoid, and jeu de taquin for type $C_n$*, J. Algebra**247**(2002), no. 2, 295–331. MR**1877856**, DOI 10.1006/jabr.2001.8905 - Cedric Lecouvey,
*Schensted-type correspondences and plactic monoids for types $B_n$ and $D_n$*, J. Algebraic Combin.**18**(2003), no. 2, 99–133. MR**2002620**, DOI 10.1023/A:1025154930381 - Cédric Lecouvey,
*An algorithm for computing the global basis of a finite dimensional irreducible $U_q(\textrm {so}_{2n+1})$ or $U_q(\textrm {so}_{2n})$-module*, Comm. Algebra**32**(2004), no. 5, 1969–1996. MR**2099716**, DOI 10.1081/AGB-120029917 - Peter Littelmann,
*A plactic algebra for semisimple Lie algebras*, Adv. Math.**124**(1996), no. 2, 312–331. MR**1424313**, DOI 10.1006/aima.1996.0085 - Dudley E. Littlewood,
*The Theory of Group Characters and Matrix Representations of Groups*, Oxford University Press, New York, 1940. MR**0002127** - M. Lothaire,
*Algebraic combinatorics on words*, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002. A collective work by Jean Berstel, Dominique Perrin, Patrice Seebold, Julien Cassaigne, Aldo De Luca, Steffano Varricchio, Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Veronique Bruyere, Christiane Frougny, Filippo Mignosi, Antonio Restivo, Christophe Reutenauer, Dominique Foata, Guo-Niu Han, Jacques Desarmenien, Volker Diekert, Tero Harju, Juhani Karhumaki and Wojciech Plandowski; With a preface by Berstel and Perrin. MR**1905123**, DOI 10.1017/CBO9781107326019 - Soichi Okada,
*A Robinson-Schensted-type algorithm for $\textrm {SO}(2n,\textbf {C})$*, J. Algebra**143**(1991), no. 2, 334–372. MR**1132576**, DOI 10.1016/0021-8693(91)90269-E - Robert A. Proctor,
*A Schensted algorithm which models tensor representations of the orthogonal group*, Canad. J. Math.**42**(1990), no. 1, 28–49. MR**1043509**, DOI 10.4153/CJM-1990-002-1 - Sheila Sundaram,
*The Cauchy identity for $\textrm {Sp}(2n)$*, J. Combin. Theory Ser. A**53**(1990), no. 2, 209–238. MR**1041446**, DOI 10.1016/0097-3165(90)90058-5 - Sheila Sundaram,
*Orthogonal tableaux and an insertion algorithm for $\textrm {SO}(2n+1)$*, J. Combin. Theory Ser. A**53**(1990), no. 2, 239–256. MR**1041447**, DOI 10.1016/0097-3165(90)90059-6 - M. Van Leeuwen,
*Double crystal of binary and integral matrices,*arXiv:math/0605420.

## Additional Information

**Cédric Lecouvey**- Affiliation: Laboratoire de Mathématiques Pures et Appliquées, Joseph Liouville, B.P. 699, 62228 Calais Cedex, France
- Received by editor(s): May 12, 2006
- Received by editor(s) in revised form: December 30, 2006, January 10, 2007, and January 17, 2007
- Published electronically: August 14, 2008
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**361**(2009), 297-329 - MSC (2000): Primary 05-02, 17B10, 17B37, 17B67
- DOI: https://doi.org/10.1090/S0002-9947-08-04480-2
- MathSciNet review: 2439408