## Towards invariants of surfaces in $4$-space via classical link invariants

HTML articles powered by AMS MathViewer

- by Sang Youl Lee PDF
- Trans. Amer. Math. Soc.
**361**(2009), 237-265 Request permission

## Abstract:

In this paper, we introduce a method to construct ambient isotopy invariants for smooth imbeddings of closed surfaces into $4$-space by using hyperbolic splittings of the imbedded surfaces and an arbitrary given isotopy or regular isotopy invariant of classical knots and links in $3$-space. Using this construction, adopting the Kauffman bracket polynomial as an example, we produce some invariants.## References

- Masahiko Asada,
*An unknotting sequence for surface-knots represented by ch-diagrams and their genera*, Kobe J. Math.**18**(2001), no. 2, 163–180. MR**1907671** - J. Scott Carter, Joachim H. Rieger, and Masahico Saito,
*A combinatorial description of knotted surfaces and their isotopies*, Adv. Math.**127**(1997), no. 1, 1–51. MR**1445361**, DOI 10.1006/aima.1997.1618 - J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford, and Masahico Saito,
*Quandle cohomology and state-sum invariants of knotted curves and surfaces*, Trans. Amer. Math. Soc.**355**(2003), no. 10, 3947–3989. MR**1990571**, DOI 10.1090/S0002-9947-03-03046-0 - David Cox, John Little, and Donal O’Shea,
*Ideals, varieties, and algorithms*, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. An introduction to computational algebraic geometry and commutative algebra. MR**1417938** - J. Scott Carter and Masahico Saito,
*Knotted surfaces and their diagrams*, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998. MR**1487374**, DOI 10.1090/surv/055 - R. H. Fox,
*A quick trip through knot theory*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR**0140099** - R.H. Fox and J.W. Milnor,
*Singularities of $2$-spheres in $4$-space and equivalence of knots*, (unpublished version). - Seiichi Kamada,
*Nonorientable surfaces in $4$-space*, Osaka J. Math.**26**(1989), no. 2, 367–385. MR**1017592** - Seiichi Kamada,
*Surfaces in $\textbf {R}^4$ of braid index three are ribbon*, J. Knot Theory Ramifications**1**(1992), no. 2, 137–160. MR**1164113**, DOI 10.1142/S0218216592000082 - Seiichi Kamada,
*A characterization of groups of closed orientable surfaces in $4$-space*, Topology**33**(1994), no. 1, 113–122. MR**1259518**, DOI 10.1016/0040-9383(94)90038-8 - Seiichi Kamada,
*Braid and knot theory in dimension four*, Mathematical Surveys and Monographs, vol. 95, American Mathematical Society, Providence, RI, 2002. MR**1900979**, DOI 10.1090/surv/095 - S. Kamada, in preparation.
- Louis H. Kauffman,
*State models and the Jones polynomial*, Topology**26**(1987), no. 3, 395–407. MR**899057**, DOI 10.1016/0040-9383(87)90009-7 - Akio Kawauchi, Tetsuo Shibuya, and Shin’ichi Suzuki,
*Descriptions on surfaces in four-space. I. Normal forms*, Math. Sem. Notes Kobe Univ.**10**(1982), no. 1, 75–125. MR**672939** - Akio Kawauchi,
*A survey of knot theory*, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. MR**1417494** - S. Y. Lee,
*Invariants of surface links in $\mathbb R^4$ via skein relation*, J. Knot Theory Ramifications**17**(2008), 439–469. - S. Y. Lee,
*Invariants of surfaces in $4$-space via an elementary classical link invariant*, preprint available at http://home.pusan.ac.kr/$^\sim$knot. - S. Y. Lee,
*Invariants of oriented surfaces in $4$-space via invariants for magnetic graphs*, in preparation. - S. J. Lomonaco Jr.,
*The homotopy groups of knots. I. How to compute the algebraic $2$-type*, Pacific J. Math.**95**(1981), no. 2, 349–390. MR**632192** - Yasuyuki Miyazawa,
*Magnetic graphs and an invariant for virtual links*, J. Knot Theory Ramifications**15**(2006), no. 10, 1319–1334. MR**2286126**, DOI 10.1142/S0218216506005135 - Y. Miyazawa,
*A multi-variable polynomial invariant for virtual knots and links*, to appear in J. Knot Theory Ramifications. - Yasutaka Nakanishi and Masakazu Teragaito,
*$2$-knots from a view of moving picture*, Kobe J. Math.**8**(1991), no. 2, 161–172. MR**1159867** - Dennis Roseman,
*Reidemeister-type moves for surfaces in four-dimensional space*, Knot theory (Warsaw, 1995) Banach Center Publ., vol. 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 347–380. MR**1634466** - Lee Rudolph,
*Braided surfaces and Seifert ribbons for closed braids*, Comment. Math. Helv.**58**(1983), no. 1, 1–37. MR**699004**, DOI 10.1007/BF02564622 - Makoto Soma,
*Surface-links with square-type ch-graphs*, Proceedings of the First Joint Japan-Mexico Meeting in Topology (Morelia, 1999), 2002, pp. 231–246. MR**1903693**, DOI 10.1016/S0166-8641(01)00120-1 - Frank J. Swenton,
*On a calculus for 2-knots and surfaces in 4-space*, J. Knot Theory Ramifications**10**(2001), no. 8, 1133–1141. MR**1871221**, DOI 10.1142/S0218216501001359 - Katsuyuki Yoshikawa,
*An enumeration of surfaces in four-space*, Osaka J. Math.**31**(1994), no. 3, 497–522. MR**1309400**

## Additional Information

**Sang Youl Lee**- Affiliation: Department of Mathematics, Pusan National University, Pusan 609-735, Korea
- Email: sangyoul@pusan.ac.kr
- Received by editor(s): December 18, 2006
- Published electronically: August 13, 2008
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**361**(2009), 237-265 - MSC (2000): Primary 57Q45; Secondary 57M25
- DOI: https://doi.org/10.1090/S0002-9947-08-04568-6
- MathSciNet review: 2439406