Complete Segal spaces arising from simplicial categories
HTML articles powered by AMS MathViewer
- by Julia E. Bergner PDF
- Trans. Amer. Math. Soc. 361 (2009), 525-546 Request permission
Abstract:
In this paper, we compare several functors which take simplicial categories or model categories to complete Segal spaces, which are particularly nice simplicial spaces which, like simplicial categories, can be considered to be models for homotopy theories. We then give a characterization, up to weak equivalence, of complete Segal spaces arising from these functors.References
- J.E. Bergner, Homotopy fiber products of homotopy theories, in preparation.
- Julia E. Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2043–2058. MR 2276611, DOI 10.1090/S0002-9947-06-03987-0
- Julia E. Bergner, Simplicial monoids and Segal categories, Categories in algebra, geometry and mathematical physics, Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, 2007, pp. 59–83. MR 2342822, DOI 10.1090/conm/431/08266
- J.E. Bergner, A survey of $(\infty ,1)$-categories, preprint available at math.AT/0610239.
- Julia E. Bergner, Three models for the homotopy theory of homotopy theories, Topology 46 (2007), no. 4, 397–436. MR 2321038, DOI 10.1016/j.top.2007.03.002
- Jean-Marc Cordier and Timothy Porter, Vogt’s theorem on categories of homotopy coherent diagrams, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 1, 65–90. MR 838654, DOI 10.1017/S0305004100065877
- Daniel Dugger, Universal homotopy theories, Adv. Math. 164 (2001), no. 1, 144–176. MR 1870515, DOI 10.1006/aima.2001.2014
- W. G. Dwyer and D. M. Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980), no. 1, 17–35. MR 578563, DOI 10.1016/0022-4049(80)90113-9
- W. G. Dwyer and D. M. Kan, A classification theorem for diagrams of simplicial sets, Topology 23 (1984), no. 2, 139–155. MR 744846, DOI 10.1016/0040-9383(84)90035-1
- W. G. Dwyer and D. M. Kan, Equivalences between homotopy theories of diagrams, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 180–205. MR 921478
- W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology 19 (1980), no. 4, 427–440. MR 584566, DOI 10.1016/0040-9383(80)90025-7
- W. G. Dwyer and D. M. Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980), no. 3, 267–284. MR 579087, DOI 10.1016/0022-4049(80)90049-3
- W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. MR 1361887, DOI 10.1016/B978-044481779-2/50003-1
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041, DOI 10.1090/surv/099
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- A. Joyal, Simplicial categories vs quasi-categories, in preparation.
- A. Joyal, The theory of quasi-categories I, in preparation.
- André Joyal and Myles Tierney, Quasi-categories vs Segal spaces, Categories in algebra, geometry and mathematical physics, Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, 2007, pp. 277–326. MR 2342834, DOI 10.1090/conm/431/08278
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- C.L. Reedy, Homotopy theory of model categories, unpublished manuscript, available at http://www-math.mit.edu/~psh.
- Charles Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001), no. 3, 973–1007. MR 1804411, DOI 10.1090/S0002-9947-00-02653-2
- Bertrand Toën, Derived Hall algebras, Duke Math. J. 135 (2006), no. 3, 587–615. MR 2272977, DOI 10.1215/S0012-7094-06-13536-6
Additional Information
- Julia E. Bergner
- Affiliation: Department of Mathematics, Kansas State University, 138 Cardwell Hall, Manhattan, Kansas 66506
- Address at time of publication: Department of Mathematics, University of California, Riverside, Riverside, California 92521
- MR Author ID: 794441
- Email: bergnerj@member.ams.org
- Received by editor(s): April 23, 2007
- Published electronically: August 18, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 525-546
- MSC (2000): Primary 55U40; Secondary 55U35, 18G55, 18G30, 18D20
- DOI: https://doi.org/10.1090/S0002-9947-08-04616-3
- MathSciNet review: 2439415