The equation $x^py^q=z^r$ and groups that act freely on $\Lambda$-trees
HTML articles powered by AMS MathViewer
- by N. Brady, L. Ciobanu, A. Martino and S. O Rourke PDF
- Trans. Amer. Math. Soc. 361 (2009), 223-236 Request permission
Abstract:
Let $G$ be a group that acts freely on a $\Lambda$-tree, where $\Lambda$ is an ordered abelian group, and let $x, y, z$ be elements in $G$. We show that if $x^p y^q = z^r$ with integers $p$, $q$, $r \geq 4$, then $x$, $y$ and $z$ commute. As a result, the one-relator groups with $x^p y^q = z^r$ as relator, are examples of hyperbolic and CAT($-1$) groups which do not act freely on any $\Lambda$-tree.References
- Hyman Bass, Group actions on non-Archimedean trees, Arboreal group theory (Berkeley, CA, 1988) Math. Sci. Res. Inst. Publ., vol. 19, Springer, New York, 1991, pp. 69–131. MR 1105330, DOI 10.1007/978-1-4612-3142-4_{3}
- Benjamin Baumslag, Residually free groups, Proc. London Math. Soc. (3) 17 (1967), 402–418. MR 215903, DOI 10.1112/plms/s3-17.3.402
- Gilbert Baumslag, On generalised free products, Math. Z. 78 (1962), 423–438. MR 140562, DOI 10.1007/BF01195185
- Gilbert Baumslag, On a problem of Lyndon, J. London Math. Soc. 35 (1960), 30–32. MR 111780, DOI 10.1112/jlms/s1-35.1.30
- Ian Chiswell, Introduction to $\Lambda$-trees, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1851337, DOI 10.1142/4495
- I. M. Chiswell, Some examples of groups with no nontrivial action on a $\Lambda$-tree, Mathematika 42 (1995), no. 1, 214–219. MR 1346688, DOI 10.1112/S0025579300011517
- Warren Dicks and H. H. Glover, An algorithm for cellular maps of closed surfaces, Enseign. Math. (2) 43 (1997), no. 3-4, 207–252. MR 1489884
- A. M. Gaglione and D. Spellman, Generalizations of free groups: some questions, Comm. Algebra 22 (1994), no. 8, 3159–3169. MR 1272379, DOI 10.1080/00927879408825019
- S. M. Gersten and H. B. Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990), no. 2, 305–334. MR 1074477, DOI 10.1007/BF01233430
- Vincent Guirardel, Limit groups and groups acting freely on $\Bbb R^n$-trees, Geom. Topol. 8 (2004), 1427–1470. MR 2119301, DOI 10.2140/gt.2004.8.1427
- T. Hsu and D. Wise. Cubulating graphs of free groups with cyclic edge groups. In preparation, 2006.
- O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998), no. 2, 472–516. MR 1610660, DOI 10.1006/jabr.1997.7183
- R. C. Lyndon, The equation $a^{2}b^{2}=c^{2}$ in free groups, Michigan Math. J. 6 (1959), 89–95. MR 103218
- R. C. Lyndon and M. P. Schützenberger, The equation $a^{M}=b^{N}c^{P}$ in a free group, Michigan Math. J. 9 (1962), 289–298. MR 162838
- A. Martino and S. O’Rourke, Free actions on $\Bbb Z^n$-trees: a survey, Geometric methods in group theory, Contemp. Math., vol. 372, Amer. Math. Soc., Providence, RI, 2005, pp. 11–25. MR 2139673, DOI 10.1090/conm/372/06870
- A. Martino and S. O Rourke, Some free actions on non-Archimedean trees, J. Group Theory 7 (2004), no. 2, 275–286. MR 2049022, DOI 10.1515/jgth.2004.009
- V. N. Remeslennikov, $\exists$-free groups, Sibirsk. Mat. Zh. 30 (1989), no. 6, 193–197 (Russian); English transl., Siberian Math. J. 30 (1989), no. 6, 998–1001 (1990). MR 1043446, DOI 10.1007/BF00970922
- Eugene Schenkman, The equation $a^{n}b^{n}=c^{n}$ in a free group, Ann. of Math. (2) 70 (1959), 562–564. MR 104723, DOI 10.2307/1970329
- Marcel-Paul Schützenberger, Sur l’équation $a^{2+n}=b^{2+m}c^{2+p}$ dans un groupe libre, C. R. Acad. Sci. Paris 248 (1959), 2435–2436 (French). MR 103219
- Zlil Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31–105. MR 1863735, DOI 10.1007/s10240-001-8188-y
Additional Information
- N. Brady
- Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
- Email: nbrady@math.ou.edu
- L. Ciobanu
- Affiliation: Department of Mathematics, University of Fribourg, CH-1700 Fribourg, Switzerland
- MR Author ID: 797163
- Email: laura.ciobanu@unifr.ch
- A. Martino
- Affiliation: Department of Mathematics, Universitat Politècnica de Catalunya, 08860 Castelldefels, Spain
- MR Author ID: 646503
- Email: Armando.Martino@upc.edu
- S. O Rourke
- Affiliation: Department of Mathematics, Cork Institute of Technology, Cork, Ireland
- Email: Shane.ORourke@cit.ie
- Received by editor(s): December 6, 2006
- Published electronically: August 19, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 361 (2009), 223-236
- MSC (2000): Primary 20E08, 20F65
- DOI: https://doi.org/10.1090/S0002-9947-08-04639-4
- MathSciNet review: 2439405