Induction for secant varieties of Segre varieties
HTML articles powered by AMS MathViewer
- by Hirotachi Abo, Giorgio Ottaviani and Chris Peterson PDF
- Trans. Amer. Math. Soc. 361 (2009), 767-792 Request permission
Abstract:
This paper studies the dimension of secant varieties to Segre varieties. The problem is cast both in the setting of tensor algebra and in the setting of algebraic geometry. An inductive procedure is built around the ideas of successive specializations of points and projections. This reduces the calculation of the dimension of the secant variety in a high dimensional case to a sequence of calculations of partial secant varieties in low dimensional cases. As applications of the technique: We give a complete classification of defective $p$-secant varieties to Segre varieties for $p\leq 6$. We generalize a theorem of Catalisano-Geramita-Gimigliano on non-defectivity of tensor powers of $\mathbb {P}{n}$. We determine the set of $p$ for which unbalanced Segre varieties have defective $p$-secant varieties. In addition, we completely describe the dimensions of the secant varieties to the deficient Segre varieties $\mathbb {P}{1}\times \mathbb {P}{1} \times \mathbb {P}{n} \times \mathbb {P}{n}$ and $\mathbb {P}{2}\times \mathbb {P}{3} \times \mathbb {P}{3}$. In the final section we propose a series of conjectures about defective Segre varieties.References
- Bjørn Ådlandsvik, Joins and higher secant varieties, Math. Scand. 61 (1987), no. 2, 213–222. MR 947474, DOI 10.7146/math.scand.a-12200
- J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201–222. MR 1311347
- C. Bocci and R. Miranda, Topics on interpolation problems in algebraic geometry, Rend. Sem. Mat. Univ. Politec. Torino 62 (2004), no. 4, 279–334. MR 2129797
- Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig. MR 1440179, DOI 10.1007/978-3-662-03338-8
- M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl. 355 (2002), 263–285. MR 1930149, DOI 10.1016/S0024-3795(02)00352-X
- M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Higher secant varieties of the Segre varieties $\Bbb P^1\times \dots \times \Bbb P^1$, J. Pure Appl. Algebra 201 (2005), no. 1-3, 367–380. MR 2158764, DOI 10.1016/j.jpaa.2004.12.049
- M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Secant varieties of Grassmann varieties, Proc. Amer. Math. Soc. 133 (2005), no. 3, 633–642. MR 2113908, DOI 10.1090/S0002-9939-04-07632-4
- M.V. Catalisano, A.V. Geramita, A. Gimigliano, On the ideals of secant varieties to certain rational varieties, Preprint
- Ciro Ciliberto, Geometric aspects of polynomial interpolation in more variables and of Waring’s problem, European Congress of Mathematics, Vol. I (Barcelona, 2000) Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 289–316. MR 1905326
- CoCoATeam, CoCoA: A system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it.
- J. Draisma, A tropical approach to secant dimensions, math.AG/0605345.
- Nicholas Eriksson, Kristian Ranestad, Bernd Sturmfels, and Seth Sullivant, Phylogenetic algebraic geometry, Projective varieties with unexpected properties, Walter de Gruyter, Berlin, 2005, pp. 237–255. MR 2202256
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417, DOI 10.1007/978-0-8176-4771-1
- D. Grayson, M. Stillman, Macaulay 2: a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2.
- G.-M. Greuel, G. Pfister, H. Schönemann. Singular 3.0: A Computer Algebra System for Polynomial Computations. Available at http://www.singular.uni-kl.de.
- J. M. Landsberg, The border rank of the multiplication of $2\times 2$ matrices is seven, J. Amer. Math. Soc. 19 (2006), no. 2, 447–459. MR 2188132, DOI 10.1090/S0894-0347-05-00506-0
- J.M. Landsberg, L. Manivel, Generalizations of Strassen’s equations for secant varieties of Segre varieties, math.AG/0601097
- Thomas Lickteig, Typical tensorial rank, Linear Algebra Appl. 69 (1985), 95–120. MR 798367, DOI 10.1016/0024-3795(85)90070-9
- Jean-Gabriel Luque and Jean-Yves Thibon, Polynomial invariants of four qubits, Phys. Rev. A (3) 67 (2003), no. 4, 042303, 5. MR 2039690, DOI 10.1103/PhysRevA.67.042303
- Barbara McGillivray, A probabilistic algorithm for the secant defect of Grassmann varieties, Linear Algebra Appl. 418 (2006), no. 2-3, 708–718. MR 2260223, DOI 10.1016/j.laa.2006.03.005
- V. Strassen, Rank and optimal computation of generic tensors, Linear Algebra Appl. 52/53 (1983), 645–685. MR 709378, DOI 10.1016/0024-3795(83)80041-X
- A. Terracini, Sulla rappresentazione delle forme quaternarie mediante somme di potenze di forme lineari, Atti R. Accad. delle Scienze di Torino, vol. 51, 1915-16.
Additional Information
- Hirotachi Abo
- Affiliation: Department of Mathematics, University of Idaho, Moscow, Idaho 83844
- MR Author ID: 614361
- Email: abo@uidaho.edu
- Giorgio Ottaviani
- Affiliation: Dipartimento di Matematica “Ulisse Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
- MR Author ID: 134700
- Email: ottavian@math.unifi.it
- Chris Peterson
- Affiliation: Department of Mathematics, Colorado State University, Fort Collins, Colorado 80525
- MR Author ID: 359254
- Email: peterson@math.colostate.edu
- Received by editor(s): February 23, 2007
- Published electronically: September 29, 2008
- Additional Notes: The authors would like to thank the Department of Mathematics of the Università di Firenze, the Department of Mathematics of Colorado State University, the National Science Foundation and GNSAGA of Italian INDAM and the FY 2008 Seed Grant Program of the University of Idaho Research Office.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 767-792
- MSC (2000): Primary 15A69, 15A72, 14Q99, 14M12, 14M99
- DOI: https://doi.org/10.1090/S0002-9947-08-04725-9
- MathSciNet review: 2452824