Sufficient conditions for strong local minima: The case of $C^{1}$ extremals
Authors:
Yury Grabovsky and Tadele Mengesha
Journal:
Trans. Amer. Math. Soc. 361 (2009), 1495-1541
MSC (2000):
Primary 49K10, 49K20
DOI:
https://doi.org/10.1090/S0002-9947-08-04786-7
Published electronically:
October 24, 2008
MathSciNet review:
2457407
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we settle a conjecture of Ball that uniform quasiconvexity and uniform positivity of the second variation are sufficient for a $C^{1}$ extremal to be a strong local minimizer. Our result holds for a class of variational functionals with a power law behavior at infinity. The proof is based on the decomposition of an arbitrary variation of the dependent variable into its purely strong and weak parts. We show that these two parts act independently on the functional. The action of the weak part can be described in terms of the second variation, whose uniform positivity prevents the weak part from decreasing the functional. The strong part âlocalizesâ, i.e. its action can be represented as a superposition of âWeierstrass needlesâ, which cannot decrease the functional either, due to the uniform quasiconvexity conditions.
- J. M. Ball, The calculus of variations and materials science, Quart. Appl. Math. 56 (1998), no. 4, 719â740. Current and future challenges in the applications of mathematics (Providence, RI, 1997). MR 1668735, DOI https://doi.org/10.1090/qam/1668735
- J. M. Ball, C. Chu, and R. D. James, Hysteresis during stress-induced variant rearrangement, J. de Physique. IV 5(1) (1995), no. 8, C8.245âC8.251.
- J. M. Ball and F. Murat, $W^{1,p}$-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984), no. 3, 225â253. MR 759098, DOI https://doi.org/10.1016/0022-1236%2884%2990041-7
- John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337â403. MR 475169, DOI https://doi.org/10.1007/BF00279992
- J. M. Ball, A version of the fundamental theorem for Young measures, PDEs and continuum models of phase transitions (Nice, 1988) Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207â215. MR 1036070, DOI https://doi.org/10.1007/BFb0024945
- John M. Ball and R. James, Incompatible sets of gradients and metastability, in preparation.
- J. M. Ball and J. E. Marsden, Quasiconvexity at the boundary, positivity of the second variation and elastic stability, Arch. Rational Mech. Anal. 86 (1984), no. 3, 251â277. MR 751509, DOI https://doi.org/10.1007/BF00281558
- C. CarathĂ©odory, Ăber die Variationsrechnung bei mehrfachen Integralen, Acta Math. Szeged 4 (1929), 401â426.
- C. Carathéodory, Calculus of variations and partial differential equations of the first order. Part II: Calculus of variations, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1967. Translated from the German by Robert B. Dean, Julius J. Brandstatter, translating editor. MR 0232264
- B. Dacorogna, Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Functional Analysis 46 (1982), no. 1, 102â118. MR 654467, DOI https://doi.org/10.1016/0022-1236%2882%2990046-5
- T. De Donder, Théorie invariantive du clacul des variations, Hayez, Brussels, 1935.
- Ronald J. DiPerna and Andrew J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), no. 4, 667â689. MR 877643
- Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics, vol. 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1034481
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- Irene Fonseca, Lower semicontinuity of surface energies, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 99â115. MR 1149987, DOI https://doi.org/10.1017/S0308210500015018
- Irene Fonseca, Stefan MĂŒller, and Pablo Pedregal, Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal. 29 (1998), no. 3, 736â756. MR 1617712, DOI https://doi.org/10.1137/S0036141096306534
- Mariano Giaquinta and Stefan Hildebrandt, Calculus of variations. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 310, Springer-Verlag, Berlin, 1996. The Lagrangian formalism. MR 1368401
- Mariano Giaquinta, Giuseppe Modica, and JiĆĂ SouÄek, Cartesian currents in the calculus of variations. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 37, Springer-Verlag, Berlin, 1998. Cartesian currents. MR 1645086
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Yury Grabovsky and Tadele Mengesha, Direct approach to the problem of strong local minima in calculus of variations, Calc. Var. Partial Differential Equations 29 (2007), no. 1, 59â83. MR 2305477, DOI https://doi.org/10.1007/s00526-006-0056-7
- Y. Grabovsky and L. Truskinovsky, Metastability in nonlinear elsticity.
- Morton E. Gurtin, Two-phase deformations of elastic solids, Arch. Rational Mech. Anal. 84 (1983), no. 1, 1â29. MR 713116, DOI https://doi.org/10.1007/BF00251547
- Magnus R. Hestenes, Sufficient conditions for multiple integral problems in the calculus of variations, Amer. J. Math. 70 (1948), 239â276. MR 25091, DOI https://doi.org/10.2307/2372325
- Magnus R. Hestenes, Calculus of variations and optimal control theory, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0203540
- Farhad HĂŒsseinov, Weierstrass condition for the general basic variational problem, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), no. 4, 801â806. MR 1357384, DOI https://doi.org/10.1017/S0308210500030353
- M.D. Kirszbraun, Ăber die zusammenziehenden und Lipschitzschen Transformationen., Fundam. Math. 22 (1934), 77â108 (German).
- R. J. Knops and C. A. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 86 (1984), no. 3, 233â249. MR 751508, DOI https://doi.org/10.1007/BF00281557
- R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems, Comm. Pure Appl. Math. 39 (1986), 113â137, 139â182 and 353â377.
- Robert V. Kohn and Peter Sternberg, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 1-2, 69â84. MR 985990, DOI https://doi.org/10.1017/S0308210500025026
- J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Tech. Report Mat-Report No. 1994-34, Mathematical Institute, Technical University of Denmark, 1994.
- Jan Kristensen and Ali Taheri, Partial regularity of strong local minimizers in the multi-dimensional calculus of variations, Arch. Ration. Mech. Anal. 170 (2003), no. 1, 63â89. MR 2012647, DOI https://doi.org/10.1007/s00205-003-0275-4
- Th. Lepage, Sur les champs gĂ©odĂ©siques des intĂ©grales multiples, Acad. Roy. Belgique. Bull. Cl. Sci. (5) 27 (1941), 27â46 (French). MR 0007465
- E. E. Levi, Sui criterii sufficienti per il massimo e per il minimo nel calcolo delle variazioni., Annali Mat. Pura Appl. 21 (1913), 173â218.
- Paolo Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1985), no. 1-3, 1â28. MR 788671, DOI https://doi.org/10.1007/BF01168345
- Charles B. Morrey Jr., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25â53. MR 54865
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
- I. P. Natanson, Theory of functions of a real variable, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron with the collaboration of Edwin Hewitt. MR 0067952
- Pablo Pedregal, Parametrized measures and variational principles, Progress in Nonlinear Differential Equations and their Applications, vol. 30, BirkhÀuser Verlag, Basel, 1997. MR 1452107
- K. D. E. Post and J. Sivaloganathan, On homotopy conditions and the existence of multiple equilibria in finite elasticity, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 3, 595â614. MR 1453283, DOI https://doi.org/10.1017/S0308210500029929
- William T. Reid, Sufficient conditions by expansion methods for the problem of Bolza in the calculus of variations, Ann. of Math. (2) 38 (1937), no. 3, 662â678. MR 1503361, DOI https://doi.org/10.2307/1968609
- Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-DĂŒsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0365062
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Miroslav Ć ilhavĂœ, The mechanics and thermodynamics of continuous media, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1423807
- Henry C. Simpson and Scott J. Spector, On the positivity of the second variation in finite elasticity, Arch. Rational Mech. Anal. 98 (1987), no. 1, 1â30. MR 866722, DOI https://doi.org/10.1007/BF00279960
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- LĂĄszlĂł SzĂ©kelyhidi Jr., The regularity of critical points of polyconvex functionals, Arch. Ration. Mech. Anal. 172 (2004), no. 1, 133â152. MR 2048569, DOI https://doi.org/10.1007/s00205-003-0300-7
- Ali Taheri, Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 1, 155â184. MR 1820298, DOI https://doi.org/10.1017/S0308210500000822
- Ali Taheri, On critical points of functionals with polyconvex integrands, J. Convex Anal. 9 (2002), no. 1, 55â72. MR 1916669
- Ali Taheri, Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3101â3107. MR 1993219, DOI https://doi.org/10.1090/S0002-9939-03-06852-7
- Ali Taheri, Local minimizers and quasiconvexityâthe impact of topology, Arch. Ration. Mech. Anal. 176 (2005), no. 3, 363â414. MR 2185663, DOI https://doi.org/10.1007/s00205-005-0356-7
- Tsuan Wu Ting, Generalized Kornâs inequalities, Tensor (N.S.) 25 (1972), 295â302. MR 331946
- Hermann Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. of Math. (2) 36 (1935), no. 3, 607â629. MR 1503239, DOI https://doi.org/10.2307/1968645
- L. C. Young, Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co., Philadelphia, 1969. Foreword by Wendell H. Fleming.
- Kewei Zhang, Remarks on quasiconvexity and stability of equilibria for variational integrals, Proc. Amer. Math. Soc. 114 (1992), no. 4, 927â930. MR 1037211, DOI https://doi.org/10.1090/S0002-9939-1992-1037211-6
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 49K10, 49K20
Retrieve articles in all journals with MSC (2000): 49K10, 49K20
Additional Information
Yury Grabovsky
Affiliation:
Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122-6094
MR Author ID:
338656
Email:
yury@temple.edu
Tadele Mengesha
Affiliation:
Department of Mathematics and Statistics, Coastal Carolina University, Conway, South Carolina 29528-6054
Email:
mengesha@coastal.edu
Received by editor(s):
February 26, 2007
Published electronically:
October 24, 2008
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.