Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The Sato-Tate conjecture on average for small angles
HTML articles powered by AMS MathViewer

by Stephan Baier and Liangyi Zhao PDF
Trans. Amer. Math. Soc. 361 (2009), 1811-1832 Request permission

Abstract:

We obtain average results on the Sato-Tate conjecture for elliptic curves for small angles.
References
  • Stephan Baier, The Lang-Trotter conjecture on average, J. Ramanujan Math. Soc. 22 (2007), no. 4, 299–314. MR 2376806
  • W. D. Banks, I. E. Shparlinski, Sato-Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height, Israel J. Math. (to appear), preprint available at ArXiv:math.NT/0609144.
  • L. Clozel, M. Harris, and R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations, preprint, available at www.math.harvard.edu/$\sim$rtaylor.
  • Chantal David and Francesco Pappalardi, Average Frobenius distributions of elliptic curves, Internat. Math. Res. Notices 4 (1999), 165–183. MR 1677267, DOI 10.1155/S1073792899000082
  • Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
  • Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 5125, DOI 10.1007/BF02940746
  • J. B. Friedlander and H. Iwaniec, The divisor problem for arithmetic progressions, Acta Arith. 45 (1985), no. 3, 273–277. MR 808026, DOI 10.4064/aa-45-3-273-277
  • Etienne Fouvry and M. Ram Murty, On the distribution of supersingular primes, Canad. J. Math. 48 (1996), no. 1, 81–104. MR 1382477, DOI 10.4153/CJM-1996-004-7
  • M. Harris, N. Shepherd-Barron and R. Taylor, Ihara’s lemma and potential automorphy, preprint, available at www.math.harvard.edu/$\sim$rtaylor.
  • E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 1 (1918), no. 4, 357–376 (German). MR 1544302, DOI 10.1007/BF01465095
  • E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920), no. 1-2, 11–51 (German). MR 1544392, DOI 10.1007/BF01202991
  • Aleksandar Ivić, The Riemann zeta-function, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications. MR 792089
  • Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
  • Kevin James and Gang Yu, Average Frobenius distribution of elliptic curves, Acta Arith. 124 (2006), no. 1, 79–100. MR 2262142, DOI 10.4064/aa124-1-7
  • Serge Lang and Hale Trotter, Frobenius distributions in $\textrm {GL}_{2}$-extensions, Lecture Notes in Mathematics, Vol. 504, Springer-Verlag, Berlin-New York, 1976. Distribution of Frobenius automorphisms in $\textrm {GL}_{2}$-extensions of the rational numbers. MR 0568299
  • R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern analysis and applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, pp. 18–61. MR 0302614
  • V. Kumar Murty, On the Sato-Tate conjecture, Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 195–205. MR 685296
  • M. Ram Murty, Recent developments in the Langlands program, C. R. Math. Acad. Sci. Soc. R. Can. 24 (2002), no. 2, 33–54 (English, with French summary). MR 1902021
  • Freydoon Shahidi, Symmetric power $L$-functions for $\textrm {GL}(2)$, Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 159–182. MR 1260961, DOI 10.1090/crmp/004/11
  • John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 0225778
  • R. Taylor, Automorphy for some $l$-adic lifts of automorphic mod $l$ representations II, preprint, available at www.math.harvard.edu/$\sim$rtaylor.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G05
  • Retrieve articles in all journals with MSC (2000): 11G05
Additional Information
  • Stephan Baier
  • Affiliation: Department of Mathematics and Statistics, Queen’s University, University Ave., Kingston, Ontario, Canada K7L 3N6
  • Address at time of publication: School of Engineering and Sciences, Jacobs University, P.O. Box 750 561, Bremen 28725 Germany
  • Email: sbaier@mast.queensu.ca
  • Liangyi Zhao
  • Affiliation: Department of Mathematics, University of Toronto, 40 Saint George Street, Toronto, Ontario, Canada M5S 2E4
  • Address at time of publication: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
  • Email: lzhao@math.toronto.edu
  • Received by editor(s): August 15, 2006
  • Received by editor(s) in revised form: February 12, 2007
  • Published electronically: October 31, 2008
  • © Copyright 2008 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 361 (2009), 1811-1832
  • MSC (2000): Primary 11G05
  • DOI: https://doi.org/10.1090/S0002-9947-08-04498-X
  • MathSciNet review: 2465818