The Sato-Tate conjecture on average for small angles
Authors:
Stephan Baier and Liangyi Zhao
Journal:
Trans. Amer. Math. Soc. 361 (2009), 1811-1832
MSC (2000):
Primary 11G05
DOI:
https://doi.org/10.1090/S0002-9947-08-04498-X
Published electronically:
October 31, 2008
MathSciNet review:
2465818
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We obtain average results on the Sato-Tate conjecture for elliptic curves for small angles.
- [1] Stephan Baier, The Lang-Trotter conjecture on average, J. Ramanujan Math. Soc. 22 (2007), no. 4, 299–314. MR 2376806
- [2] W. D. Banks, I. E. Shparlinski, Sato-Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height, Israel J. Math. (to appear), preprint available at ArXiv:math.NT/0609144.
- [3]
L. Clozel, M. Harris, and R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations, preprint, available at www.math.harvard.edu/
rtaylor.
- [4] Chantal David and Francesco Pappalardi, Average Frobenius distributions of elliptic curves, Internat. Math. Res. Notices 4 (1999), 165–183. MR 1677267, https://doi.org/10.1155/S1073792899000082
- [5] Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- [6] Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 5125, https://doi.org/10.1007/BF02940746
- [7] J. B. Friedlander and H. Iwaniec, The divisor problem for arithmetic progressions, Acta Arith. 45 (1985), no. 3, 273–277. MR 808026, https://doi.org/10.4064/aa-45-3-273-277
- [8] Etienne Fouvry and M. Ram Murty, On the distribution of supersingular primes, Canad. J. Math. 48 (1996), no. 1, 81–104. MR 1382477, https://doi.org/10.4153/CJM-1996-004-7
- [9]
M. Harris, N. Shepherd-Barron and R. Taylor, Ihara's lemma and potential automorphy, preprint, available at www.math.harvard.edu/
rtaylor.
- [10] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 1 (1918), no. 4, 357–376 (German). MR 1544302, https://doi.org/10.1007/BF01465095
- [11] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920), no. 1-2, 11–51 (German). MR 1544392, https://doi.org/10.1007/BF01202991
- [12] Aleksandar Ivić, The Riemann zeta-function, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications. MR 792089
- [13] Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214
- [14] Kevin James and Gang Yu, Average Frobenius distribution of elliptic curves, Acta Arith. 124 (2006), no. 1, 79–100. MR 2262142, https://doi.org/10.4064/aa124-1-7
- [15] Serge Lang and Hale Trotter, Frobenius distributions in 𝐺𝐿₂-extensions, Lecture Notes in Mathematics, Vol. 504, Springer-Verlag, Berlin-New York, 1976. Distribution of Frobenius automorphisms in 𝐺𝐿₂-extensions of the rational numbers. MR 0568299
- [16] R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 18–61. Lecture Notes in Math., Vol. 170. MR 0302614
- [17] V. Kumar Murty, On the Sato-Tate conjecture, Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 195–205. MR 685296
- [18] M. Ram Murty, Recent developments in the Langlands program, C. R. Math. Acad. Sci. Soc. R. Can. 24 (2002), no. 2, 33–54 (English, with French summary). MR 1902021
- [19] Freydoon Shahidi, Symmetric power 𝐿-functions for 𝐺𝐿(2), Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 159–182. MR 1260961
- [20] John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 0225778
- [21]
R. Taylor, Automorphy for some
-adic lifts of automorphic mod
representations II, preprint, available at www.math.harvard.edu/
rtaylor.
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G05
Retrieve articles in all journals with MSC (2000): 11G05
Additional Information
Stephan Baier
Affiliation:
Department of Mathematics and Statistics, Queen’s University, University Ave., Kingston, Ontario, Canada K7L 3N6
Address at time of publication:
School of Engineering and Sciences, Jacobs University, P.O. Box 750 561, Bremen 28725 Germany
Email:
sbaier@mast.queensu.ca
Liangyi Zhao
Affiliation:
Department of Mathematics, University of Toronto, 40 Saint George Street, Toronto, Ontario, Canada M5S 2E4
Address at time of publication:
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
Email:
lzhao@math.toronto.edu
DOI:
https://doi.org/10.1090/S0002-9947-08-04498-X
Keywords:
Sato-Tate conjecture,
average Frobenius distribution
Received by editor(s):
August 15, 2006
Received by editor(s) in revised form:
February 12, 2007
Published electronically:
October 31, 2008
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.