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ALGEBRAIC SHIFTING AND GRADED BETTI NUMBERS

SATOSHI MURAI AND TAKAYUKI HIBI

ABSTRACT. Let S = K|z1,...,zn] denote the polynomial ring in n variables
over a field K with each degz; = 1. Let A be a simplicial complex on [n] =
{1,...,n} and In C S its Stanley—Reisner ideal. We write A° for the exterior
algebraic shifted complex of A and A€ for a combinatorial shifted complex of
A. Let Bi;4;(Ia) = dimg Tor;(K, Ia)i+; denote the graded Betti numbers of
Ia. In the present paper it will be proved that (i) Bii+;(Iac) < Biitj(Tac)
for all ¢ and j, where the base field is infinite, and (ii) Bii4+; (Ja) < Biitj(Tac)
for all 4 and j, where the base field is arbitrary. Thus in particular one has
Bii+j(Ia) < Biitj(Intea) for all i and j, where Al*X is the unique lexsegment
simplicial complex with the same f-vector as A and where the base field is
arbitrary.

INTRODUCTION

Kalai [8] together with Herzog [7] offer an attractive introduction, which includes
several unsolved problems and conjectures, to the combinatorial and algebraic study
of shifting theory in algebraic and extremal combinatorics.

Let S = K[z, ...,2,] denote the polynomial ring in n variables over a field K
with each degz; = 1. One of the current trends in computational commutative
algebra is the computation of the graded Betti numbers of homogeneous ideals.
Recall that the graded Betti numbers §;; = 8;;(I), where ¢, j > 0, of a homogeneous
ideal I C S are

ﬂ”(I) = dlmK TOI'Z(K, I)j
In other words, the graded Betti numbers {3;;} j—0,1,... appear in the minimal
graded free resolution

0 — @S(—j)ﬁhi NN @S(_j)ﬁlj N @S(_j)ﬁoj- Y SN
J J J

of I over S, where h = projdimg I is the projective dimension of I over S.

Let A be a simplicial complex on [n] = {1,...,n} and In C S the Stanley—
Reisner ideal of A. We write A®, A® and A€ for the symmetric algebraic shifted
complex, the exterior algebraic shifted complex and a combinatorial shifted com-
plex, respectively, of A. Since the paper [I] was published, it has been conjectured
that for an arbitrary simplicial complex A on [n] one has

Biivi(In) < Biivi(Ins) < Biivj(Iae) < Biigj(Iac)
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for all 4 and j. When the base field is of characteristic 0, the first inequality
Biit;i(Ia) < Biit;(Ias) is proved in [3] Theorem 2.1].

Let A’ be a shifted (or strongly stable [I, p. 365]) simplicial complex with
the same f-vector as A and A!®* the unique lexsegment simplicial complex with
the same f-vector as A ([I, Theorem 3.5]). It is known [I, Theorem 4.4] that
Biiti(Iar) < Biit;(Iatex). Since A® is shifted with the same f-vector as A, when
the base field is of characteristic 0, one has G4 ;(Ia) < Biitj(Latex) for all ¢ and j
(B, Theorem 2.9]).

The main purpose of the present paper is to establish two fundamental results
stated below concerning the graded Betti numbers of Ia, Iae and Iac.

Theorem 2.10. Let the base field be infinite. Let A be a simplicial complex, A€
the exterior algebraic shifted complex of A and A® a combinatorial shifted complex
of A. Then

Biitj(Iae) < Biiyj(Iac)
for alli and j.

Theorem 3.4. Let the base field be arbitrary. Let A be a simplicial complexr and
A€ a combinatorial shifted complex of A. Then

Biit;(Ia) < Biig;(Lac)
for alli and j.

Since A€ is shifted with the same f-vector as A, it follows from Theorem 3.4
together with [I, Theorem 4.4] that

Corollary 3.5. Let the base field be arbitrary. Let A be a simplicial complex and
AX the unique lexsegment simplicial complex with the same f-vector as A. Then

Biitj(Ia) < Biitj(Larex)
for alli and j.

The present paper will be organized as follows. First of all, following [7] the
fundamental materials on algebraic shifting will be summarized in Section 1. Sec-
ond, our proof of Theorem will be achieved in Section 2. On the other hand,
based on Hochster’s formula [4, Theorem 5.5.1] to compute graded Betti numbers
of Stanley—Reisner ideals, we will prove Theorem B4 in Section 3.

Finally, in Section 4 the bad behavior of graded Betti numbers of Ine will be
studied. More precisely, since a combinatorial shifted complex of A is not unique, it
is natural to ask, given a simplicial complex A, if there exist combinatorial shifted
complexes A and Ag of A such that, for each combinatorial shifted complex A€
of A and for all ¢ and j, one has

Bii+i(Iag) < Biivi(Iae) < 5¢i+j(IA§)-

Unfortunately, in general, the existence of such combinatorial shifted complexes A{
and Ag cannot be expected (Theorem F3]). In particular, we construct a simplicial
complex A for which there is no combinatorial shifted complex A€ of A with A€ =
A° (Corollary [.4).
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1. ALGEBRAIC SHIFTING

Let [n] = {1,...,n} and write ([?]) for the set of i-element subsets of [n]. Let
S = Klx1,...,2,] denote the polynomial ring in n variables over a field K with
each degx; = 1. Let V be a vector space over K of dimension n with basis ey, ..., e,
and E = @)_, A4 (V) the exterior algebra of V. If ¢ = {ji,...,j4} € ([Z]) with
Jj1 < -+ < ja, then z, = x;, ---x;, is a squarefree monomial of S of degree d and
e =€ N---Nej, € A (V) will be called a monomial of E of degree d.

Let A be a simplicial complex on [n]. Thus A is a collection of subsets of [n]
such that (i) {j} € A for all j € [n] and (ii) if 7 C [n] and ¢ € A with 7 C o,
then 7 € A. A face of A is an element 0 € A. The f-vector of A is the vector
f(A) = (fo, f1,-..), where f; is the number of faces o € A with |o| =i+ 1. (For
a finite set o the notation |o| stands for its cardinality.) The Stanley—Reisner ideal
of A is the ideal Ia of S generated by those squarefree monomials z, with o € A.
The exterior face ideal of A is the ideal Jo of F generated by those monomials e,
with o & A.

If I C S is a squarefree ideal, i.e., an ideal generated by squarefree monomials,
with each x; € I, then there is a unique simplicial complex A on [n] with I = Ia. If
I C E is a monomial ideal, i.e., an ideal generated by monomials, with each e; & I,
then there is a unique simplicial complex A on [n] with I = Ja.

A monomial ideal I C S is called strongly stable if for each monomial v € I and
for each j € [n] for which z; divides u one has z;u/x; € I for all i < j. A squarefree
ideal I C S is called squarefree strongly stable if for each monomial z, € I and for
each j € o one has x(,\(jpugy € I for all @ < j with i € 0. A monomial ideal
I C FE is called strongly stable if for each monomial e, € I and for each j € o one
has e(o\{jHufs} € I for all i < j with i & o.

We say that a simplicial complex A on [n] is shifted if the monomial ideal Ja
is strongly stable (or equivalently, the squarefree ideal I is squarefree strongly
stable). In other words, A is shifted if A possesses the property that for each face
o € A and for each i € o one has (o \ {i}) U {j} € A for all j > i with j &€ 0.

Assume that the base field K is of characteristic 0. Fix the reverse lexicographic
order <;ey on S = KJz1,...,z,] induced by the ordering x; > --- > z,,. Given a
homogeneous ideal I C S, we write GinS(I) for the generic initial ideal [6], p. 129]
of I with respect to <;ev. The generic initial ideal Gin® (I) of a homogeneous ideal
I C S is strongly stable [6] Theorem 1.27].

We refer the reader to [2] for the foundation on the Grébner basis theory in the
exterior algebra. Assume that the base field K is infinite. We work with the reverse
lexicographic order <,y on F induced by the ordering e; > es > --- > e,. Given a
homogeneous ideal I C E, we write Gin® (I) for the generic initial ideal |2, p. 183]
of I with respect to <,ey. The generic initial ideal Gin® (I) of a homogeneous ideal
I C E is strongly stable [2, Proposition 1.7].

A shifting operation on [n] is a map which associates each simplicial complex A
on [n] with a simplicial complex Shift(A) on [n] and which satisfies the following
conditions:

(S1) Shift(A) is shifted;

(S2) Shift(A) = A if A is shifted;
(Ss)

(S4)

F(A) = £(Shift(A));
Shift(A) C Shift(A) if A’ C A.
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Erdés, Ko and Rado [5] introduce a combinatorial shifting. Let A be a simplicial
complex on [n]. Let 1 < i < j < n. Write Shift;;(A) for the simplicial complex on
[n] whose faces are C;;(0) C [n], where ¢ € A and where

CM(U):{ (@\{HU{) ifico jgoand (o\{i})U{)} ¢ A,

o, otherwise.

It follows from, e.g., [7, Corollary 8.6] that there exists a finite sequence of pairs of
integers (i1, 1), (i2,J2), - - - » (9> Jq) With each 1 < i < ji < n such that

Shift;_;, (Shift;, ;. _, (--- (Shift;,;, (A))---))

is shifted. Such a shifted complex is called a combinatorial shifted complex of A
and will be denoted by A¢. A combinatorial shifted complex A€ of A is, however,
not necessarily unique. The operation A — A€ which is a shifting operation ([T
Lemma 8.4]), is called combinatorial shifting.

Assume that the base field K is infinite. The exterior algebraic shifted complex
of a simplicial complex A on [n] is the simplicial complex A° on [n] with

Jae = Gin®(Jp).

Following [7, p. 105] and [8, p. 125] the operation A — A€, which is a shifting
operation ([7, Proposition 8.8]), is called exterior algebraic shifting.

Assume that the base field K is of characteristic 0. Let A be a simplicial com-
plex on [n] and write G(Gin®(I,)) for the unique minimal system of monomial
generators of the generic initial ideal Gin® (Ia) of the Stanley—Reisner ideal Ia of
S. Let U= Tjy Tiy T+ Ty, where 1 <43 <ip <+ <4 <+ <ig<n,bea
monomial belonging to G(Gin®(Ia)). One has i, + (s — 1) < n (|7, Lemma 8.15]).
We then introduce the squarefree monomial

*
U = Tjy Tig41 " Tij4(j—1) " LTig+(s—1)

of S and write (Gin®(Ia))* for the squarefree ideal of S generated by those mono-
mials u* with u € G(Gin®(Ia)). The symmetric algebraic shifted complex of A is
the simplicial complex A® on [n] with

Ins = (Gin®(Ip))*.

Since Gin¥(I5) is strongly stable, it follows that A® is shifted (|7, Lemma 8.17]).
The operation A — A?®, which is a shifting operation ([7, Theorem 8.19)), is called
symmetric algebraic shifting.

2. GRADED BETTI NUMBERS OF Iae AND Iac

Let K be an infinite field, S = K|[zq,...,x,] the polynomial ring in n variables
over K with each degz; = 1 and E = @)_, A“(V) the exterior algebra of a vector
space V over K of dimension n with basis ey, ..., e,. Assume that the general linear
group GL(n; K) acts linearly on E. Let, as before, <,., be the reverse lexicographic
order on F induced by the ordering e; > --- > e,.

Given an arbitrary homogeneous ideal I = @, I of E with each Iy C AV,
fix ¢ € GL(n; K) for which in.__(¢(I)) is the generic initial ideal Gin®(I) of I.
Recall that the subspace A%(V) is of dimension (%) with a canonical K-basis e,
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o € (). Choose an arbitrary K-basis fi,. .., fs of Iy, where s = dimy I;. Write
each o(fi;), 1 <1i < s, of the form

o(fi) = Z o7 €q
UG([Z])
with each af € K. Let M(I,d) denote the s x (7}) matrix
M(1,d) = (aF)

1<i<s, oe(n)

whose columns are indexed by o € ([Z]). Moreover, for each 7 € ([Z]), write M, (1, d)

for the submatrix of M (I, d) which consists of the columns of M (I,d) indexed by
those o € (") with e, <oy €, and write M’ (I, d) for the submatrix of M. (I, d)
which is obtained by removing the column of M, (I,d) indexed by 7.

Lemma 2.1. Let e, € A\(V) with T € ([Z]). Then one has e, € (Gin®(I))q if and
only if rank(M.(I,d)) < rank(M,(I,d)).

Proof. In linear algebra we know that rank(M/ (I, d)) < rank(M,(I,d)) if and only
if the row vector (0,...,0,1) with “1” lying on the column indexed by 7 arises
in M, (I,d) after repeating the elementary transformations on the row vectors of
M, (I,d). Thus, by identifying the rows of M(I,d) with ¢(f1),...,o(fs), it fol-
lows that rank(M/(I,d)) < rank(M,(I,d)) if and only if there exist cy,...,cs
belonging to K with in<, (f) = e,, where f = >0, ¢;o(f;) € (¢(I))a. Since
Gin®(I) = in<,_ (p(I)), one has e, € (Gin®(I))y if and only if rank(M’(I,d)) <
rank(M.(1,d)), as desired. O

Corollary 2.2. The rank of a matriz M, (I,d), 7 € ([Z]), is independent of the
choice of ¢ € GL(n; K) for which Gin®(I) = in____(¢(I)) together with a K -basis
f17"'7fs Of-[d-

Corollary 2.3. Let I C E be a homogeneous ideal and 1» € GL(n; K). Then one
has rank(M, (I,d)) = rank(M, ((I),d)) for all 7 € ().

Proof. Recall that there is a nonempty subset U C GL(n; K) which is Zariski
open and dense such that Gin”(I) = in.__(¢(I)) for all ¢ € U. Similarly, there
is a nonempty subset V' C GL(n; K) which is Zariski open and dense such that
Gin® (y(I)) = ine, (¢'(¢(I))) for all ¢’ € V. Since Uyp~'NV #£ 0, if p € Uy~ 1NV,
then Gin®(I) = in.__(p(1(I))) = Gin® (4 (I)) and the matrix M(I,d) using py €
U and a K-basis f1,..., fs of Iy coincides with M (¢(I),d) using p € V and a
K-basis ¥(f1),...,¥(fs) of ¥(I)q4. O

If u = e, is a monomial of E, then we set m(u) = max{j : j € o}. Given a
monomial ideal I C E, one defines m<;(I,d), where 1 <i<mnand 1<d<mn, by
m<;(I,d) ={u=e, € I : deg(u) =d,m(u) <i}|
Corollary 2.4. Let o;q) = {i —d+ 1,i —d+2,...,i} € ([Z]). Then given a
homogeneous ideal I C E one has
m<;(Gin®(I),d) = rank(M,,, , (I,d)),

where rank (M, (I,d))=01ifi<d.

9 (i,d)
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Proof. Let 7 € (["]). Then m(e;) < i if and only if o Srev €. On the
other hand, Lemma [ZT] says that rank(My, , (I,d)) coincides with the number
of monomials e, € (Gin”(I))y with €oiay Srev €r. Thus m<;(Gin®(I),d) =

rank(M, , , (1, d)), as required. O

Let I C E be a monomial ideal. Fix 1 <i < j < n. Let t € K and introduce
the linear injective map S}, : I — E satisfying

St (e) = § C@\NUE) Tleo, iTJ €0, igo and e\t # 1
AN o, otherwise,

where e, € I is a monomial. Let I;;(t) C E denote the image of I by Sf;.

Lemma 2.5. (a) Ift # 0, then there is \f; € GL(n; K) with I;;(t) = N;(I). In
particular the subspace I;;(t) is an ideal of E.
(b) Let A denote the simplicial complex on [n| and Ja its exterior face ideal.

Then (JA)ij (0) = Jshiftij(A),
Proof. (a) Let A}; € GL(n; K) satisfy
t _ €k (k 7& j)7
Aijler) = { e; + te; (k= 7).
We claim I;;(t) = A;(I). Let e, € 1.
(i) If j & o, then M;(es) = e, = S};(es). Thus \j;(e,) € Ij5(t).
(ii) If j € 0 and i € o, then A, (eg) = te, = tS}; (eg) Thus \};(eq) € Iij(t).
(iii) Let j € o and i € o with e\ 510y € 1. Then Ai(eo) = e\ (i})ufi} T teo
and Sj;(eq) = €5 Since e\ yugiy € I, Sj(e@\(ihutin) = €@\ oty €
Iij(t). Thus \j;(eq) € Iij(t).
(iv) Let j € o and i ¢ o with e\ (jyugey & I Then Afj(es) = e\ (})ugiy +teo
and S};(es) = e\ (s} + teo. Thus Af;(eq) € Iij(t).
Hence \};(I) C I;;(t). Since each of \f; and S}; is injective, one has I;;(t) = A};(I),
as desired.
(b) We claim {o C [n] : €5 € (Ja)i;(0) } N Shift;;(A) = 0.
(i) If e € (Ja)i;(0) with e, & Ja, then there is e, € Ja with o = (7\{j})
U{i}. Since 0 € A, 7 ¢ A and 7 = (0 \ {i}) U{j}, one has 7 = Cy;(0) €
(ii) Let ex € (Ja)i;(0) with e, € Ja. Suppose o € Shift;;(A). Since o ¢ A,
there is 7 C [n] with 7 € A such that o = (7\ {i}) U {j}. Hence j € o,
i ¢ oand e; = e\ (j1)ugiy € Ja. Thus e, € (Ja)i;(0) and ey & (Ja)i;(0).
Hence (Ja)i;(0) C Jsnist,; (a)- Since dimg (Ja)i;(0) = dimpg Jao = dimg Jspige,; ()
it follows that (JA)ij (0) = Jshiftij(A)' (I
Lemma 2.6. Work with the same notation as in Corollary 2.4l One has
rank(Ma(i,d) (JShiftij(A)7 d)) < rank( O (i,d) (JA7 ))
Proof. Fix a finite set A C K with 0 € A for which |[A] > (}) + 2. One has
¢ € GL(n; K) for which in<_ (©((Ja)sj(¢))) is the generic initial ideal of (Ja)i;(t)
for all t € A. For each o € (["]) we write

vl(es) Z cler, cl € K.
TG( )
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By using ¢ together with the K-basis {S};(es) : e, € (Ja)a} of ((Ja)ij(t))a, we
compute the matrix M((Ja)i;(t),d). If Sf;(es) = e\ (5})ufiy 1 teo, then

p(S;(e0)) = Z (el ipugit +tea)er
TE([Z])
Hence
M((Ja)ig(8),d) = (oF +167)1 <ocaimuc(7a)is ()0, o€ ()
with each of, 57 € K.
Let r(t) = rank(M,

o) ((Ja)ij(t), d)). Thus r(t) coincides with the largest size of
nonzero minors of the matrix M,

o0 ((Ja)ij(t), d). Fix a minor N(t) of size r(0) of
My, o ((Ja)ij(t),d) with N(0) # 0. We regard N(t) as a polynomial in ¢ of degree
at most 7(0). Since r(0) < (7)) and |A| > (7)) + 2, it follows that there is 0 # a € A
with N(a) # 0. Hence r(0) < r(a). Corollary 23 together with Lemma now
guarantees that r(0) = rank(My, ,, (Jshi,; (a), d)) and r(a) = rank(My, ,, (Ja,d)).
Thus rank(Mo, ., (Jshife,;(a), d)) < rank(M,, , (Ja,d)), as desired. O

Corollary 2.7. Let A be a simplicial complex on [n]. Then for all i and d one has
m<;(Jae,d) > m<;(Jac,d).

Proof. Corollary 2.4 together with Lemma guarantees that

(1) mgi(GinE(JA), d) > mgi(GinE(JShiftij(A))7 d).

Hence m<;(Gin®(Ja), d) >m<;(Gin® (Jac), d). In other words, one has m<;(Jac, d)
> m<i(Jae)e,d). However, since A° is shifted, it follows that (A¢)® = A°. Thus
m<;(Jae,d) > m<;(Jac,d), as desired. O

We now approach the final step to prove the inequalities B;;1;(Iac) < Biiyj(Iac)
for all 7 and j on graded Betti numbers of Iae and Iac. Lemma 2.8 stated below
essentially appears in [Il pp. 376 — 377].

Lemma 2.8. If A is a shifted simplicial complex, then for all i and j one has
n-j\_\ k=
Bii+i(Ia) = mgn(JA,j)< ; ) - ngk(JA,j)<i 3 1>
k=j

- imSk—l(JA,j - 1)(k ;j>

k=j

Corollary 2.9. Let A and A’ be shifted simplicial complexes on [n] with f(A) =
f(A") and suppose that

m<i(Ja, J) = m<i(Jar, j)
for all i and j. Then for all i and j one has
Biitj(Ia) < Biivrj(Iar).

Proof. Since f(A) = f(A'), one has m<,(Ja,j) = m<n(Jas,j) for all j. Lemma
28 then yields the inequalities Bi;+;(Ia) < Biitj(Ias) for all ¢ and j, as desired. O
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Theorem 2.10. Let the base field be infinite. Let A be a simplicial complex, A°
the exterior algebraic shifted complex of A and A€ a combinatorial shifted complex
of A. Then

Biiti(Iae) < Biitj(Iac)
for alli and j.

Proof. Corollary .1 guarantees m<;(Jac,j) < m<;(Jae,j) for all 4 and j. Thus
by virtue of Corollary [Z9] the required inequalities G;i1;(Iac) < Biitj(Iac) follow
immediately. (Il

3. GRADED BETTI NUMBERS OF IAn AND Iac

Let K be an arbitrary field, and let S = K|[z1,...,x,] denote the polynomial
ring in n variables over K with each degxz; = 1. Let A be a simplicial complex on
[n] and In C S its Stanley Reisner ideal. Let Hy(A; K) denote the kth reduced
homology group of A with coefficients K. If W C [n], then Ay stands for the
simplicial complex on W whose faces are those faces o of A with o0 C W.

Recall that Hochster’s formula [4, Theorem 5.5.1] to compute the graded Betti
numbers of Ia says that

(2) Biitj(Ia) = > dimg (Hj—o(Aw; K))
wc[n], |W|=i+j
for all ¢ and j.
Fix 1 <i < j <n and set I" = Shift;;(A).
Lemma 3.1. One has
dimK(I:Ik(A; K)) S dimK(f{k(I‘; K))
for all k.

Proof. By considering an extension field of K if necessary, we assume that K is
infinite. Let A denote the exterior algebraic shifted complex of A. It is known
I7, Proposition 8.10] that Hy(A; K) = H(A® K). Thus what we must prove is
dimg (Hp (A% K)) < dimg (Hy(I%; K)) for all k. By using (2) one has B, (Ia) =
dimK(I{In,i,g(A; K)). Hence our work is to show that §;,(Iac) < Bin(Ire) for all
i. The inequality (1) says that m<;(Jae,j) > m<;(Jre,j) for all ¢ and j. It then
follows from Corollary that Biiyj(Iac) < Biig;(Ire) for all ¢ and j. Thus in
particular By, (Iac) < Bin(Ire) for all 7. O

Let W C [’Il] \ {Z,]} Let Al = AWU{i}a AQ = AWU{j}a Fl = FWU{?,} and
Fg = FWU{j}- Then

AiNAy=T1NTy =Aw =Tw,

(3) uly= Shlft”(Al @] Ag)

Recall that the reduced Mayer—Vietoris exact sequence of A; and A, and that of

I'y and T’y are the exact sequences
01,k 02,k

cee —>ﬁk(Aw, K)—>Hk(A1, K) &) .E[k-(AQ; K)—>Hk(A1 U AQ;K)

O3,k 7 O1,k—1

—Hp1(Aw; K) =— -+,

. 9, - . %y ~
- —Hy(Tw; K)—5Hy(Ty; K) @ Hy(Do; K) =5 Hy (T UTo; K)

o/
1,k—1

031 =~ 9
%kal(rw;K) — e,
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Lemma 3.2. One has
Ker () ;) C Ker(01 1)
for all k.

Proof. Let 7 be a permutation on [n] with (i) < 7(j) and 7w(A) the simplicial
complex {m(F) : F € A} on [n]. Since the combinatorial type of Shift;;(A) is
equal to that of Shift ;. (m(A)), we will assume that j =i + 1.

Let, in general, C,(A) denote the vector space over K with basis {e;yi;...i, }
where {ig,%1,...,i} € A and where 1 <4y < iy < -+ < i < n, and define the lin-
ear map 0: Ck(A) — Ckfl(A) by setting a(eioil...ik) :Z‘I;:O(_:l)jeioil"'ij—lij+1"'ik .

Let [a] € Ker(0] ;,), where a € Ci(I'w ). Since ([al, [a]) € Hy(T1; K) @ Hy(Dy; K)
vanishes, one has u € Cy41(I'1) with 9(u) = a. Say,

u= E apuiyerufiy + E bgea,
|F|=k+1,i¢F, FU{i}el'y |G|=k+2,GeAw

where apyy,be € K.

Let FF C W with FU {i} € I';. Then FU {i} € A; and F U {j} € Ag. Thus
FU{j} € Ty. In particular u € Cyy1(A1) with d(u) = a.

Since a € Cy(Tw ) is a linear combination of those basis elements er with F € T,
F Cc W and |F| = k+ 1 and since j = i + 1, it follows that d(v) = a, where
v € Cry1(T2) N Cry1(As) is the element

v= Z apu{i}erufj} + Z baeg.
|F|=k+1,igF, FU{i}ely |G|=k+2, GEAW
Hence ([a], [a]) € Hi(Ar; K) ® Hp(Ay; K) vanishes, as required. O

It then follows that
dimg (Ker (1 1)) > dimg (Ker(0; 1)),
dimg (Im(91 1)) < dimg (Im(0] ),
(4) dimg (Ker(dy,1)) < dimg (Ker(95,)).
On the other hand,
(5)  dimg(Hp(A1 U Ag; K)) = dimg (Ker(,,)) + dimg (Im(03.1)),
(6) dimg (Hg(Ty UTs; K)) = dimg (Ker(% ) + dim g (Im (0% 1))
Lemma [3.] together with (3) guarantees that

(7) dim g (Hyp (A1 U Ag; K)) < dimg (Hy, (T UTy; K)).
Since Im(03 ) = Ker(9 x—1) and Im(9% ;) = Ker(9] ;,_,), Lemma B2 yields
(8) dimg (Im(0s ) > dimK(Im(aé,k)).

Since Tm (02 %) = Ker(03 ) and Im(0; ;) = Ker(dy ), it follows from (5) and (6)
together with (7) and (8) that

Finally, it follows from the reduced Mayer—Vietoris exact sequence of A; and A,
and that of I’y and I'y together with (4) and (9) that

(10) dimg (Hy(A1; K) @ Hy(Ag; K)) < dim g (Hy (T3 K) @ Hy,(To; K)).
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Lemma 3.3. Fiz 1 < p < q < n. Let A be a simplicial complex on [n] and
I' = Shift,,(A). Then

Bii+i(Ia) < Bii+j(Ir)
for all i and j.
Proof. The right-hand side of Hochster’s formula (11) can be rewritten as

Bii+j(In) = aij(A) +7i5(A) + 65 (A),

where
aij(A) = Z dimK(f{jfg(Aw;K)),
W [n]\{p,q}, |W|=i+j
%ii(A) = > dim (Hj—s(Awugpy; K))
wc[n]\{p,q}, |W|=it+j—1
+ > dimg (Hj—2(Awuigy: K)),
WCn\{p.q}, |W|=i+j—1
5ij(A) = > dimg (Hj—2(Awip.g): K)).

wc[n\{p,q}, |W|=it+j—2

Let W C [n]\{p,q}. Then Ay = T'w. Thus a;;(A) = a;;(T). Since I'yygp,qp =
Shift(Ayw ugp,qy ), LemmaB.Tsays that §;;(A) < d;;(I"). Finally, it follows from (10)
that 7;;(A) < 745(T). Hence Bii4;(Ia) < Biit;(Ir), as desired. O

Lemma [3.3] together with the definition of combinatorial shifting now guarantees
that

Theorem 3.4. Let the base field be arbitrary. Let A be a simplicial complex and
A€ a combinatorial shifted complexes of A. Then
Biivi(Ia) < Biir;(Uac)
for all i and j.
Let A’ be a shifted simplicial complex with the same f-vector as A and Al®* the
unique lexsegment simplicial complex with the same f-vector as A. It is known [I]

Theorem 4.4] that B;i1;(Ia’) < Biitj(Iatex) for all ¢ and j. Since A€ is shifted with
f(A®) = f(A), it follows that Bii4;(Iac) < Biitj(Iatex) for all ¢ and j. Hence

Corollary 3.5. Let the base field be arbitrary. Let A be a simplicial complex and
A'*X the unique lexsegment simplicial complex with the same f-vector as A. Then
Biitj(In) < Biitj(Latex)

for alli and j.

4. BAD BEHAVIOR OF COMBINATORIAL SHIFTED COMPLEXES

Given a simplicial complex A, do there exist combinatorial shifted complexes A
and Ag of A such that, for all combinatorial shifted complexes A€ of A and for all
1 and j, one has

Biiti(Ing) < Biirj(Ine) < Biitj(Iag) ?
Unfortunately, in general, the existence of such combinatorial shifted complexes Af
and Ag cannot be expected.
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Let V be a vector space of dimension 15 with basis ej,...,e;5 and E =
@215:0 (V) the exterior algebra of V. Let <jox denote the lexicographic order
on F induced by the ordering e; > --- > ey5. To simplify the notation we employ
the following:

hi=e1, ha=exNes, hg=e3Neqses,
h4:€4/\"'/\67, h5:€5/\"'/\69, h6:66/\"'/\611.

First, we introduce H; ¢ A*(V) with 3 <i <8 and A4, B ¢ A\*(V) by setting

Hjz = {e12 Neis,e1a Aers,e13 Aeis}, Hy = {e1a Neis,era Aery,e1s Neist,
Hs = {e12 Nes,e12 ANers,erq Aest, Hg = {e12 Nes,e13 A ey, ers ANest,
H; ={e12 Neisg,e13 ANers,e1a Nest, Hg = {e12 ANe1s,e13 Ners,e1a Neist,

A= {ea Nes, e Aeis,e13 Aewst, B = {e12 Neis,e12 ANes,e1a Aers}.

Second, we introduce T; € A*(V) and T;(H) € A" (V) with 3 < i < 8 by setting

T, = {es€ /\(V) thi—a Aeia Aers <iex €os
T,(H) = {hi—aNe, : e, € H}  where H € {H;, A, B}.

Let I = ;5:3 Iy C E denote the ideal of E generated by the monomials belonging

to U?:g(Ti U T;(H;)) together with all monomials of degree 9 and A the simplicial
complex on {1,...,15} with T = Ja.

Lemma 4.1. (a) For 3 < d < 8 the subspace I is spanned by Ty U Ty(Hy).
(b) Let 3<d <8 and e, € I; with e, & Ty(Hy). Then S’?j(eg) =
(c) Unless 12 < i < j <15 one has S%(eg) =e, foralle, € Ui:s Ty(Hq).

Proof. (a) Let 3 < d < 8. We claim e;(Ty UT4(Hg)) C Tyqqq for all j. In fact,
ha—1 N ez Aeis <iex €5 AN hg—a Aep Aeqg unless e Ahg_o Aep Aeg # 0.

(b) Let e, € Iy withe, &€ Ty(Hg). Let j € o and i & 0. Since hg_2AejaNers <iex
€o, one has hqg o A e12 A e13 <iex €\ {jpufi}- Lhus e\ 1oty € Ta- Hence
SPi(e) = eq.

(c) Let i < 12. Let e, = hg—o Aey € Ty(Hy). Let j € 7 and @ € 7. Then
ha_o Aers N e1sz <iex e(r\{51)u{i}- Thus er\{iHu{i} € Ty. Hence S?j(eg) =e,. O

Given a sequence Q = (Qs, ..., Qg) with each Q; € {A, B} we write IQ for the
ideal of E' generated by the monomials belonging to U?:g(Ti UT;(Q;)) together with
all monomials of degree 9. Let Wypig (A) denote the set of combinatorial shifted
complexes of A.

Lemma 4.2. (a) Let A° € Wapit(A). Then Jac is of the form IQ.

(b) None of A € Wynist (A) satisfies Jac = (A4

(c) Nomne of A® € Winire(A) satisfies Jae = [BB),

(d) For each i and for each j with i < j there is A°(i,5; A) € Winite(A) with
JAC(i,j;A) = IQ, where Qz = Qj = A.

(e) For each i and for each j with i < j there is A°(i,j; B) € Winits(A) with
JAC(i,j;B) = IQ, where Qz = Qj = B.

Proof. After repeated applications of the operations S?k jo» Where 12 <gj < ji, <15

and where k = 1,2,..., each subset Ty(Hy) will shift to either T;(A) or Ty(B).
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Moreover, Sp;(Tu(A)) = Tu(A) and S;(T4(B)) = Ta(B) for all 1 <i < j < 15. Our
claim (a) follows from this observation together with Lemma [Tl

A routine computation yields the classification of the sequences Q = (Qs, ..., Qs)
for which there is A® € Wipnige (A) with Jae = IQ. The classification table is

(A A, A A A B), (A A A A B A),...,(B,A A A A A),
(B,B,B,B,B,A), (B,B,B,B,A,B),...,(A,B,B,B, B, B)
together with
(A,A A B,B,B), (B,A,B,A,B,A),
(B,B,A,B,AA), (A,B,B,A, A, B).
Our claims (b), (¢), (d) and (e) now follow immediately. O

Theorem 4.3. (a) None of Af € Wit (A) satisfies Biitj(Jac) < ﬁiiJrj(JAg) for
all A® € Winiee (A) and for all i and j.

(b) None of Af € Winite(A) satisfies ﬂm—j(JAg) < Biitj(Jac) for all A° €
Wenitt (A) and for all i and j.

Proof. Let Af € Winitt (A) with Ing = IQ. By Lemma L2 (c) there is 3 < j < 8
with Q; = Aand @ = Bforall 3 < j’ < j. Lemmal2l(e) guarantees the existence
of A°(j — 1,53 B) € Wanite(A) with Jacj_15.5) = ¥, where Q' = (Q4,..., Q%)
with Q;_; = Q; = B. Then for i # 14 one has

m<i(Jac(j-1,4;8),J — 1) = m<i(Jag, j — 1)
and
m<i(Jacj-1,4;8),J) = m<i(Jag, J).
On the other hand, m<is(Jac—1,5:8),J — 1) = m§14(JA§,j — 1) and
m<14(Jac(j-1,5;8):4) < m<ia(Jag, j). Now, Lemma 2.8 says that fiiy;(Jag) <
Biitj(Jac(—1,5:m)) for alli. Thus Af € Wanir(A), such that Giirj(Jac) < Biivj(Jag)

for all A € Wipiri(A) and for all ¢ and j, does not exist. This completes the proof
of (a). A similar technique can be used to prove (b). O

Corollary 4.4. None of A® € Wynits (A) satisfies A® = A°.

Proof. Let Af € Winire(A) satisfy A® = AP, Since Biiyj(Jac) < Biirj(Jae) for
all 4 and j, it follows that 6”4_](JA§) < ﬂii+]‘(JAc) for all A€ € Wshift(A) and for
all 4 and j. This fact contradicts Theorem 3] (b). Thus none of A € Wipiz(A)
satisfies A® = A°, as desired. O
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