$L\log L$ results for the maximal operator in variable $L^p$ spaces
HTML articles powered by AMS MathViewer
- by D. Cruz-Uribe SFO and A. Fiorenza PDF
- Trans. Amer. Math. Soc. 361 (2009), 2631-2647 Request permission
Abstract:
We generalize the classical $L\log L$ inequalities of Wiener and Stein for the Hardy-Littlewood maximal operator to variable $L^p$ spaces where the exponent function $p(\cdot )$ approaches $1$ in value. We prove a modular inequality with no assumptions on the exponent function, and a strong norm inequality if we assume the exponent function is log-Hölder continuous. As an application of our approach we give another proof of a related endpoint result due to Hästö.References
- M. Isabel Aguilar Cañestro and Pedro Ortega Salvador, Weighted weak type inequalities with variable exponents for Hardy and maximal operators, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 126–130. MR 2279278
- Claudia Capone, David Cruz-Uribe, and Alberto Fiorenza, The fractional maximal operator and fractional integrals on variable $L^p$ spaces, Rev. Mat. Iberoam. 23 (2007), no. 3, 743–770. MR 2414490, DOI 10.4171/RMI/511
- D. Cruz-Uribe and A. Fiorenza, Approximate identities in variable $L^p$ spaces, Math. Nachr. 280 (2007), no. 3, 256–270. MR 2292148, DOI 10.1002/mana.200410479
- D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238. MR 1976842
- D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239–264. MR 2210118
- L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot )}$, Math. Inequal. Appl. 7 (2004), no. 2, 245–253. MR 2057643, DOI 10.7153/mia-07-27
- Lars Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657–700 (English, with English and French summaries). MR 2166733, DOI 10.1016/j.bulsci.2003.10.003
- L. Diening, P. Hästö, and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, FSDONA04 Proceedings (Drabek and Rakosnik (eds.); Milovy, Czech Republic, Academy of Sciences of the Czech Republic, Prague, 2005, 38–58.
- Toshihide Futamura and Yoshihiro Mizuta, Maximal functions for Lebesgue spaces with variable exponent approaching 1, Hiroshima Math. J. 36 (2006), no. 1, 23–28. MR 2213640
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Peter A. Hästö, The maximal operator in Lebesgue spaces with variable exponent near 1, Math. Nachr. 280 (2007), no. 1-2, 74–82. MR 2290383, DOI 10.1002/mana.200410465
- Ondrej Kováčik and Jiří Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618. MR 1134951
- Julian Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. MR 724434, DOI 10.1007/BFb0072210
- Aleš Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\Bbb R)$, Math. Inequal. Appl. 7 (2004), no. 2, 255–265. MR 2057644, DOI 10.7153/mia-07-28
- E. M. Stein, Note on the class $L$ $\textrm {log}$ $L$, Studia Math. 32 (1969), 305–310. MR 247534, DOI 10.4064/sm-32-3-305-310
- Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1–18. MR 1546100, DOI 10.1215/S0012-7094-39-00501-6
Additional Information
- D. Cruz-Uribe SFO
- Affiliation: Department of Mathematics, Trinity College, Hartford, Connecticut 06106-3100
- Email: david.cruzuribe@trincoll.edu
- A. Fiorenza
- Affiliation: Dipartimento di Costruzioni e Metodi Matematici in Architettura, Università di Napoli, Via Monteoliveto, 3, I-80134 Napoli, Italy – and – Istituto per le Applicazioni del Calcolo “Mauro Picone”, sezione di Napoli, Consiglio Nazionale delle Ricerche, via Pietro Castellino, 111, I-80131 Napoli, Italy
- MR Author ID: 288318
- Email: fiorenza@unina.it
- Received by editor(s): November 30, 2006
- Received by editor(s) in revised form: July 23, 2007
- Published electronically: November 19, 2008
- Additional Notes: The first author was partially supported by the Stewart-Dorwart faculty development fund of Trinity College. Both authors would like to thank the anonymous referee for the close reading of the original version of this paper.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 2631-2647
- MSC (2000): Primary 42B25, 42B35
- DOI: https://doi.org/10.1090/S0002-9947-08-04608-4
- MathSciNet review: 2471932