## Resolution of the wavefront set using continuous shearlets

HTML articles powered by AMS MathViewer

- by Gitta Kutyniok and Demetrio Labate PDF
- Trans. Amer. Math. Soc.
**361**(2009), 2719-2754 Request permission

## Abstract:

It is known that the Continuous Wavelet Transform of a distribution $f$ decays rapidly near the points where $f$ is smooth, while it decays slowly near the irregular points. This property allows the identification of the singular support of $f$. However, the Continuous Wavelet Transform is unable to describe the geometry of the set of singularities of $f$ and, in particular, identify the wavefront set of a distribution. In this paper, we employ the same framework of affine systems which is at the core of the construction of the wavelet transform to introduce the Continuous Shearlet Transform. This is defined by $\mathcal {SH}_\psi f(a,s,t) = \langle {f}{\psi _{ast}}\rangle$, where the analyzing elements $\psi _{ast}$ are dilated and translated copies of a single generating function $\psi$. The dilation matrices form a two-parameter matrix group consisting of products of parabolic scaling and shear matrices. We show that the elements $\{\psi _{ast}\}$ form a system of smooth functions at continuous scales $a>0$, locations $t \in \mathbb {R}^2$, and oriented along lines of slope $s \in \mathbb {R}$ in the frequency domain. We then prove that the Continuous Shearlet Transform does exactly resolve the wavefront set of a distribution $f$.## References

- J. Bros and D. Iagolnitzer,
*Support essentiel et structure analytique des distributions*, Séminaire Goulaouic-Lions-Schwartz, exp. no. 19 (1975-1976). - A.-P. Calderón,
*Intermediate spaces and interpolation, the complex method*, Studia Math.**24**(1964), 113–190. MR**167830**, DOI 10.4064/sm-24-2-113-190 - Emmanuel J. Candès and Laurent Demanet,
*The curvelet representation of wave propagators is optimally sparse*, Comm. Pure Appl. Math.**58**(2005), no. 11, 1472–1528. MR**2165380**, DOI 10.1002/cpa.20078 - Emmanuel J. Candès and David L. Donoho,
*Ridgelets: a key to higher-dimensional intermittency?*, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.**357**(1999), no. 1760, 2495–2509. MR**1721227**, DOI 10.1098/rsta.1999.0444 - Emmanuel J. Candès and David L. Donoho,
*New tight frames of curvelets and optimal representations of objects with piecewise $C^2$ singularities*, Comm. Pure Appl. Math.**57**(2004), no. 2, 219–266. MR**2012649**, DOI 10.1002/cpa.10116 - Emmanuel J. Candès and David L. Donoho,
*Continuous curvelet transform. I. Resolution of the wavefront set*, Appl. Comput. Harmon. Anal.**19**(2005), no. 2, 162–197. MR**2163077**, DOI 10.1016/j.acha.2005.02.003 - Emmanuel J. Candès and David L. Donoho,
*Continuous curvelet transform. I. Resolution of the wavefront set*, Appl. Comput. Harmon. Anal.**19**(2005), no. 2, 162–197. MR**2163077**, DOI 10.1016/j.acha.2005.02.003 - Peter G. Casazza,
*The art of frame theory*, Taiwanese J. Math.**4**(2000), no. 2, 129–201. MR**1757401**, DOI 10.11650/twjm/1500407227 - Ole Christensen,
*An introduction to frames and Riesz bases*, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003. MR**1946982**, DOI 10.1007/978-0-8176-8224-8 - Antonio Córdoba and Charles Fefferman,
*Wave packets and Fourier integral operators*, Comm. Partial Differential Equations**3**(1978), no. 11, 979–1005. MR**507783**, DOI 10.1080/03605307808820083 - S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke,
*The uncertainty principle associated with the continuous shearlet transform,*Int. J. Wavelets Multiresolut. Inf. Process.**6**(2008), 157–181. - S. Dahlke, G. Kutyniok, G. Steidl and G. Teschke,
*Shearlet coorbit spaces and associated Banach frames*, preprint (2007). - Glenn Easley, Demetrio Labate, and Wang-Q Lim,
*Sparse directional image representations using the discrete shearlet transform*, Appl. Comput. Harmon. Anal.**25**(2008), no. 1, 25–46. MR**2419703**, DOI 10.1016/j.acha.2007.09.003 - A. Grossmann, J. Morlet, and T. Paul,
*Transforms associated to square integrable group representations. I. General results*, J. Math. Phys.**26**(1985), no. 10, 2473–2479. MR**803788**, DOI 10.1063/1.526761 - Kanghui Guo, Gitta Kutyniok, and Demetrio Labate,
*Sparse multidimensional representations using anisotropic dilation and shear operators*, Wavelets and splines: Athens 2005, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2006, pp. 189–201. MR**2233452** - Kanghui Guo and Demetrio Labate,
*Optimally sparse multidimensional representation using shearlets*, SIAM J. Math. Anal.**39**(2007), no. 1, 298–318. MR**2318387**, DOI 10.1137/060649781 - Kanghui Guo, Demetrio Labate, Wang-Q Lim, Guido Weiss, and Edward Wilson,
*Wavelets with composite dilations*, Electron. Res. Announc. Amer. Math. Soc.**10**(2004), 78–87. MR**2075899**, DOI 10.1090/S1079-6762-04-00132-5 - Kanghui Guo, Demetrio Labate, Wang-Q Lim, Guido Weiss, and Edward Wilson,
*Wavelets with composite dilations and their MRA properties*, Appl. Comput. Harmon. Anal.**20**(2006), no. 2, 202–236. MR**2207836**, DOI 10.1016/j.acha.2005.07.002 - M. Holschneider,
*Wavelets*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. An analysis tool; Oxford Science Publications. MR**1367088** - Lars Hörmander,
*The analysis of linear partial differential operators. I*, Classics in Mathematics, Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis; Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. MR**1996773**, DOI 10.1007/978-3-642-61497-2 - G. Kutyniok and T. Sauer,
*Adaptive directional subdivision schemes and shearlet multiresolution analysis*, preprint, 2007. - D. Labate, W. Lim, G. Kutyniok, and G. Weiss,
*Sparse multidimensional representation using shearlets*, Wavelets XI (San Diego, CA, 2005), 254–262, SPIE Proc.**5914**, SPIE, Bellingham, WA, 2005. - R. S. Laugesen, N. Weaver, G. L. Weiss, and E. N. Wilson,
*A characterization of the higher dimensional groups associated with continuous wavelets*, J. Geom. Anal.**12**(2002), no. 1, 89–102. MR**1881293**, DOI 10.1007/BF02930862 - Stéphane Mallat,
*A wavelet tour of signal processing*, Academic Press, Inc., San Diego, CA, 1998. MR**1614527** - Yves Meyer,
*Wavelets and operators*, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR**1228209** - Hart F. Smith,
*A Hardy space for Fourier integral operators*, J. Geom. Anal.**8**(1998), no. 4, 629–653. MR**1724210**, DOI 10.1007/BF02921717 - Christopher D. Sogge,
*Fourier integrals in classical analysis*, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. MR**1205579**, DOI 10.1017/CBO9780511530029 - Elias M. Stein,
*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192** - G. Weiss and E. N. Wilson,
*The mathematical theory of wavelets*, Twentieth century harmonic analysis—a celebration (Il Ciocco, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 329–366. MR**1858791**

## Additional Information

**Gitta Kutyniok**- Affiliation: Department of Statistics, Stanford University, Stanford, California 94305
- Email: kutyniok@stanford.edu
**Demetrio Labate**- Affiliation: Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, North Carolina 27695
- Email: dlabate@unity.ncsu.edu
- Received by editor(s): April 24, 2006
- Received by editor(s) in revised form: November 1, 2007
- Published electronically: October 24, 2008
- Additional Notes: The first author acknowledges support from Deutsche Forschungsgemeinschaft (DFG), Grant KU 1446/5-1

The second author acknowledges support from NSF Grant DMS 0604561 - © Copyright 2008 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**361**(2009), 2719-2754 - MSC (2000): Primary 42C15; Secondary 42C40
- DOI: https://doi.org/10.1090/S0002-9947-08-04700-4
- MathSciNet review: 2471937