Sturmian and spectral theory for discrete symplectic systems
HTML articles powered by AMS MathViewer
- by Martin Bohner, Ondřej Došlý and Werner Kratz PDF
- Trans. Amer. Math. Soc. 361 (2009), 3109-3123 Request permission
Abstract:
We consider $2n\times 2n$ symplectic difference systems together with associated discrete quadratic functionals and eigenvalue problems. We establish Sturmian type comparison theorems for the numbers of focal points of conjoined bases of a pair of symplectic systems. Then, using this comparison result, we show that the numbers of focal points of two conjoined bases of one symplectic system differ by at most $n$. In the last part of the paper we prove the Rayleigh principle for symplectic eigenvalue problems and we show that finite eigenvectors of such eigenvalue problems form a complete orthogonal basis in the space of admissible sequences.References
- R. P. Agarwal, M. Bohner, S. R. Grace, and D. O’Regan. Discrete Oscillation Theory. Hindawi Publishing Corporation, 2005.
- Calvin D. Ahlbrandt and Allan C. Peterson, Discrete Hamiltonian systems, Kluwer Texts in the Mathematical Sciences, vol. 16, Kluwer Academic Publishers Group, Dordrecht, 1996. Difference equations, continued fractions, and Riccati equations. MR 1423802, DOI 10.1007/978-1-4757-2467-7
- Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses: theory and applications, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0396607
- Martin Bohner, Controllability and disconjugacy for linear Hamiltonian difference systems, Proceedings of the First International Conference on Difference Equations (San Antonio, TX, 1994) Gordon and Breach, Luxembourg, 1995, pp. 65–77. MR 1678645
- M. Bohner. Zur positivität diskreter quadratischer Funktionale. Ph.D. thesis, Universität Ulm, 1995. English Edition: On positivity of discrete quadratic functionals.
- Martin Bohner, Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions, J. Math. Anal. Appl. 199 (1996), no. 3, 804–826. MR 1386607, DOI 10.1006/jmaa.1996.0177
- Martin Bohner, Discrete Sturmian theory, Math. Inequal. Appl. 1 (1998), no. 3, 375–383. MR 1629392, DOI 10.7153/mia-01-36
- Martin Bohner and Ondřej Došlý, Disconjugacy and transformations for symplectic systems, Rocky Mountain J. Math. 27 (1997), no. 3, 707–743. MR 1490271, DOI 10.1216/rmjm/1181071889
- Martin Bohner, Ondřej Došlý, and Werner Kratz, An oscillation theorem for discrete eigenvalue problems, Rocky Mountain J. Math. 33 (2003), no. 4, 1233–1260. MR 2052485, DOI 10.1216/rmjm/1181075460
- Martin Bohner, Ondřej Došlý, and Werner Kratz, Positive semidefiniteness of discrete quadratic functionals, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 3, 627–636. MR 2013957, DOI 10.1017/S0013091502001086
- Ondřej Došlý and Werner Kratz, A Sturmian separation theorem for symplectic difference systems, J. Math. Anal. Appl. 325 (2007), no. 1, 333–341. MR 2273528, DOI 10.1016/j.jmaa.2006.01.074
- Ondřej Došlý and Werner Kratz, Oscillation theorems for symplectic difference systems, J. Difference Equ. Appl. 13 (2007), no. 7, 585–605. MR 2336808, DOI 10.1080/10236190701264776
- J. Elyseeva, A transformation for symplectic systems and the definition of a focal point, Comput. Math. Appl. 47 (2004), no. 1, 123–134. MR 2062731, DOI 10.1016/S0898-1221(04)90011-9
- Kang Feng, The Hamiltonian way for computing Hamiltonian dynamics, Applied and industrial mathematics (Venice, 1989) Math. Appl., vol. 56, Kluwer Acad. Publ., Dordrecht, 1991, pp. 17–35. MR 1147188
- R. Hilscher, Reid roundabout theorem for symplectic dynamic systems on time scales, Appl. Math. Optim. 43 (2001), no. 2, 129–146. MR 1814591, DOI 10.1007/s00245-001-0002-1
- Roman Hilscher and Viera Růžičková, Implicit Riccati equations and quadratic functionals for discrete symplectic systems, Int. J. Difference Equ. 1 (2006), no. 1, 135–154. MR 2296502
- Werner Kratz, Quadratic functionals in variational analysis and control theory, Mathematical Topics, vol. 6, Akademie Verlag, Berlin, 1995. MR 1334092
- Werner Kratz, Discrete oscillation, J. Difference Equ. Appl. 9 (2003), no. 1, 135–147. In honour of Professor Allan Peterson on the occasion of his 60th birthday, Part II. MR 1958308, DOI 10.1080/1023619031000060972
- Jiangang Qi and Shaozhu Chen, Lower bound for the spectrum and the presence of pure point spectrum of a singular discrete Hamiltonian system, J. Math. Anal. Appl. 295 (2004), no. 2, 539–556. MR 2072031, DOI 10.1016/j.jmaa.2004.03.060
- V. Růžičková. Discrete symplectic systems and definiteness of quadratic functionals. Ph.D. thesis, Masaryk University Brno, 2006.
- William T. Reid, Oscillation criteria for self-adjoint differential systems, Trans. Amer. Math. Soc. 101 (1961), 91–106. MR 133518, DOI 10.1090/S0002-9947-1961-0133518-X
- William T. Reid, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0273082
- William T. Reid, Sturmian theory for ordinary differential equations, Applied Mathematical Sciences, vol. 31, Springer-Verlag, New York-Berlin, 1980. With a preface by John Burns. MR 606199, DOI 10.1007/978-1-4612-6110-0
- Yuming Shi, Symplectic structure of discrete Hamiltonian systems, J. Math. Anal. Appl. 266 (2002), no. 2, 472–478. MR 1880519, DOI 10.1006/jmaa.2000.7747
- Yuming Shi, Spectral theory of discrete linear Hamiltonian systems, J. Math. Anal. Appl. 289 (2004), no. 2, 554–570. MR 2026925, DOI 10.1016/j.jmaa.2003.08.039
- Yi Wang, Yuming Shi, and Guojing Ren, Transformations for complex discrete linear Hamiltonian and symplectic systems, Bull. Austral. Math. Soc. 75 (2007), no. 2, 179–191. MR 2312562, DOI 10.1017/S0004972700039125
Additional Information
- Martin Bohner
- Affiliation: Department of Mathematics and Statistics and Department of Economics and Finance, Missouri University of Science and Technology, Rolla, Missouri 65401
- MR Author ID: 295863
- ORCID: 0000-0001-8310-0266
- Ondřej Došlý
- Affiliation: Department of Mathematics and Statistics, Masaryk University, CZ-61137, Brno, Czech Republic
- Werner Kratz
- Affiliation: Institut für Angewandte Analysis, Universität Ulm, D-89069 Ulm, Germany
- Received by editor(s): June 20, 2007
- Published electronically: December 30, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 3109-3123
- MSC (2000): Primary 39A12, 39A13, 34B24, 49K99
- DOI: https://doi.org/10.1090/S0002-9947-08-04692-8
- MathSciNet review: 2485420