A trace on fractal graphs and the Ihara zeta function
HTML articles powered by AMS MathViewer
- by Daniele Guido, Tommaso Isola and Michel L. Lapidus PDF
- Trans. Amer. Math. Soc. 361 (2009), 3041-3070 Request permission
Abstract:
Starting with Ihara’s work in 1968, there has been a growing interest in the study of zeta functions of finite graphs, by Sunada, Hashimoto, Bass, Stark and Terras, Mizuno and Sato, to name just a few authors. Then, Clair and Mokhtari-Sharghi studied zeta functions for infinite graphs acted upon by a discrete group of automorphisms. The main formula in all these treatments establishes a connection between the zeta function, originally defined as an infinite product, and the Laplacian of the graph. In this article, we consider a different class of infinite graphs. They are fractal graphs, i.e. they enjoy a self-similarity property. We define a zeta function for these graphs and, using the machinery of operator algebras, we prove a determinant formula, which relates the zeta function with the Laplacian of the graph. We also prove functional equations, and a formula which allows approximation of the zeta function by the zeta functions of finite subgraphs.References
- M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Astérisque, No. 32-33, Soc. Math. France, Paris, 1976, pp. 43–72. MR 0420729
- Martin T. Barlow, Heat kernels and sets with fractal structure, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 11–40. MR 2039950, DOI 10.1090/conm/338/06069
- Laurent Bartholdi, Counting paths in graphs, Enseign. Math. (2) 45 (1999), no. 1-2, 83–131. MR 1703364
- Hyman Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), no. 6, 717–797. MR 1194071, DOI 10.1142/S0129167X92000357
- Hyman Bass and Alexander Lubotzky, Tree lattices, Progress in Mathematics, vol. 176, Birkhäuser Boston, Inc., Boston, MA, 2001. With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits. MR 1794898, DOI 10.1007/978-1-4612-2098-5
- F. Cipriani, D. Guido, T. Isola. A C$^{*}$-algebra of geometric operators on self-similar CW-complexes. Novikov–Shubin and L$^{2}$-Betti numbers, accepted for publication in the Journal of Functional Analysis.
- Bryan Clair and Shahriar Mokhtari-Sharghi, Zeta functions of discrete groups acting on trees, J. Algebra 237 (2001), no. 2, 591–620. MR 1816705, DOI 10.1006/jabr.2000.8600
- Bryan Clair and Shahriar Mokhtari-Sharghi, Convergence of zeta functions of graphs, Proc. Amer. Math. Soc. 130 (2002), no. 7, 1881–1886. MR 1896018, DOI 10.1090/S0002-9939-02-06532-2
- G. Elek. Aperiodic order, integrated density of states and the continuous algebras of John von Neumann, preprint 2006, arXiv:math-ph/0606061.
- Michael Farber, Geometry of growth: approximation theorems for $L^2$ invariants, Math. Ann. 311 (1998), no. 2, 335–375. MR 1625742, DOI 10.1007/s002080050190
- Dominique Foata and Doron Zeilberger, A combinatorial proof of Bass’s evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2257–2274. MR 1487614, DOI 10.1090/S0002-9947-99-02234-5
- Bent Fuglede and Richard V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520–530. MR 52696, DOI 10.2307/1969645
- Rostislav I. Grigorchuk and Andrzej Żuk, The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps, Random walks and geometry, Walter de Gruyter, Berlin, 2004, pp. 141–180. MR 2087782
- Daniele Guido and Tommaso Isola, A semicontinuous trace for almost local operators on an open manifold, Internat. J. Math. 12 (2001), no. 9, 1087–1102. MR 1871337, DOI 10.1142/S0129167X01001106
- Daniele Guido and Tommaso Isola, Dimensions and spectral triples for fractals in $\Bbb R^N$, Advances in operator algebras and mathematical physics, Theta Ser. Adv. Math., vol. 5, Theta, Bucharest, 2005, pp. 89–108. MR 2238285
- D. Guido, T. Isola, M. L. Lapidus. Ihara zeta functions for periodic simple graphs, $C^ *$-algebras and elliptic theory II-papers from the International Conference held in Bedlewo, January 2006, 103–121. Edited by Burghelea, D.; Melrose, R.; Mishchenko, A.; Troitsky, E. Trends in Mathematics. Birkhäuser Verlag, Basel, 2008.
- D. Guido, T. Isola, M. L. Lapidus. Ihara’s zeta function for periodic graphs and its approximation in the amenable case, Journal of Functional Analysis 255 (2008), 1339-1361.
- Ben M. Hambly and Takashi Kumagai, Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 233–259. MR 2112125
- Ki-ichiro Hashimoto and Akira Hori, Selberg-Ihara’s zeta function for $p$-adic discrete groups, Automorphic forms and geometry of arithmetic varieties, Adv. Stud. Pure Math., vol. 15, Academic Press, Boston, MA, 1989, pp. 171–210. MR 1040608, DOI 10.2969/aspm/01510171
- Ki-ichiro Hashimoto, Zeta functions of finite graphs and representations of $p$-adic groups, Automorphic forms and geometry of arithmetic varieties, Adv. Stud. Pure Math., vol. 15, Academic Press, Boston, MA, 1989, pp. 211–280. MR 1040609, DOI 10.2969/aspm/01510211
- Ki-ichiro Hashimoto, On zeta and $L$-functions of finite graphs, Internat. J. Math. 1 (1990), no. 4, 381–396. MR 1080105, DOI 10.1142/S0129167X90000204
- Ki-ichiro Hashimoto, Artin type $L$-functions and the density theorem for prime cycles on finite graphs, Internat. J. Math. 3 (1992), no. 6, 809–826. MR 1194073, DOI 10.1142/S0129167X92000370
- Matthew D. Horton, H. M. Stark, and Audrey A. Terras, What are zeta functions of graphs and what are they good for?, Quantum graphs and their applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 173–189. MR 2277616, DOI 10.1090/conm/415/07868
- Yasutaka Ihara, On discrete subgroups of the two by two projective linear group over ${\mathfrak {p}}$-adic fields, J. Math. Soc. Japan 18 (1966), 219–235. MR 223463, DOI 10.2969/jmsj/01830219
- Motoko Kotani and Toshikazu Sunada, Zeta functions of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000), no. 1, 7–25. MR 1749978
- Bernhard Krön, Green functions on self-similar graphs and bounds for the spectrum of the Laplacian, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 6, 1875–1900 (English, with English and French summaries). MR 1954327, DOI 10.5802/aif.1937
- B. Krön, Growth of self-similar graphs, J. Graph Theory 45 (2004), no. 3, 224–239. MR 2037759, DOI 10.1002/jgt.10157
- Bernhard Krön and Elmar Teufl, Asymptotics of the transition probabilities of the simple random walk on self-similar graphs, Trans. Amer. Math. Soc. 356 (2004), no. 1, 393–414. MR 2020038, DOI 10.1090/S0002-9947-03-03352-X
- Michel L. Lapidus and Machiel van Frankenhuysen, Fractal geometry and number theory, Birkhäuser Boston, Inc., Boston, MA, 2000. Complex dimensions of fractal strings and zeros of zeta functions. MR 1726744, DOI 10.1007/978-1-4612-5314-3
- Michel L. Lapidus and Machiel van Frankenhuijsen, Fractal geometry, complex dimensions and zeta functions, Springer Monographs in Mathematics, Springer, New York, 2006. Geometry and spectra of fractal strings. MR 2245559, DOI 10.1007/978-0-387-35208-4
- Hirobumi Mizuno and Iwao Sato, Bartholdi zeta functions of some graphs, Discrete Math. 306 (2006), no. 2, 220–230. MR 2203806, DOI 10.1016/j.disc.2005.08.007
- Bojan Mohar, The spectrum of an infinite graph, Linear Algebra Appl. 48 (1982), 245–256. MR 683222, DOI 10.1016/0024-3795(82)90111-2
- Bojan Mohar and Wolfgang Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), no. 3, 209–234. MR 986363, DOI 10.1112/blms/21.3.209
- Sam Northshield, A note on the zeta function of a graph, J. Combin. Theory Ser. B 74 (1998), no. 2, 408–410. MR 1654160, DOI 10.1006/jctb.1998.1861
- Sam Northshield, Two proofs of Ihara’s theorem, Emerging applications of number theory (Minneapolis, MN, 1996) IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 469–478. MR 1691545, DOI 10.1007/978-1-4612-1544-8_{1}9
- John Roe, An index theorem on open manifolds. I, II, J. Differential Geom. 27 (1988), no. 1, 87–113, 115–136. MR 918459
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7
- Jean-Pierre Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_p$, J. Amer. Math. Soc. 10 (1997), no. 1, 75–102 (French). MR 1396897, DOI 10.1090/S0894-0347-97-00220-8
- H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), no. 1, 124–165. MR 1399606, DOI 10.1006/aima.1996.0050
- H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings. II, Adv. Math. 154 (2000), no. 1, 132–195. MR 1780097, DOI 10.1006/aima.2000.1917
- A. A. Terras and H. M. Stark, Zeta functions of finite graphs and coverings. III, Adv. Math. 208 (2007), no. 1, 467–489. MR 2304325, DOI 10.1016/j.aim.2006.03.002
- Toshikazu Sunada, $L$-functions in geometry and some applications, Curvature and topology of Riemannian manifolds (Katata, 1985) Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp. 266–284. MR 859591, DOI 10.1007/BFb0075662
- R. Exel. Rotation numbers for automorphisms of $C^*$ algebras, Pacific J. Math. 127 (1987), 31-89.
Additional Information
- Daniele Guido
- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, I–00133 Roma, Italy
- Email: guido@mat.uniroma2.it
- Tommaso Isola
- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, I–00133 Roma, Italy
- Email: isola@mat.uniroma2.it
- Michel L. Lapidus
- Affiliation: Department of Mathematics, University of California, Riverside, California 92521-0135
- Email: lapidus@math.ucr.edu
- Received by editor(s): May 31, 2007
- Published electronically: December 29, 2008
- Additional Notes: The first and second authors were partially supported by MIUR, GNAMPA and by the European Network “Quantum Spaces - Noncommutative Geometry” HPRN-CT-2002-00280
The third author was partially supported by the National Science Foundation, the Academic Senate of the University of California, and GNAMPA - © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 3041-3070
- MSC (2000): Primary 11M41, 46Lxx, 05C38; Secondary 05C50, 28A80, 11M36, 30D05
- DOI: https://doi.org/10.1090/S0002-9947-08-04702-8
- MathSciNet review: 2485417