## A trace on fractal graphs and the Ihara zeta function

HTML articles powered by AMS MathViewer

- by Daniele Guido, Tommaso Isola and Michel L. Lapidus PDF
- Trans. Amer. Math. Soc.
**361**(2009), 3041-3070 Request permission

## Abstract:

Starting with Ihara’s work in 1968, there has been a growing interest in the study of zeta functions of finite graphs, by Sunada, Hashimoto, Bass, Stark and Terras, Mizuno and Sato, to name just a few authors. Then, Clair and Mokhtari-Sharghi studied zeta functions for infinite graphs acted upon by a discrete group of automorphisms. The main formula in all these treatments establishes a connection between the zeta function, originally defined as an infinite product, and the Laplacian of the graph. In this article, we consider a different class of infinite graphs. They are fractal graphs, i.e. they enjoy a self-similarity property. We define a zeta function for these graphs and, using the machinery of operator algebras, we prove a determinant formula, which relates the zeta function with the Laplacian of the graph. We also prove functional equations, and a formula which allows approximation of the zeta function by the zeta functions of finite subgraphs.## References

- M. F. Atiyah,
*Elliptic operators, discrete groups and von Neumann algebras*, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Astérisque, No. 32-33, Soc. Math. France, Paris, 1976, pp. 43–72. MR**0420729** - Martin T. Barlow,
*Heat kernels and sets with fractal structure*, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 11–40. MR**2039950**, DOI 10.1090/conm/338/06069 - Laurent Bartholdi,
*Counting paths in graphs*, Enseign. Math. (2)**45**(1999), no. 1-2, 83–131. MR**1703364** - Hyman Bass,
*The Ihara-Selberg zeta function of a tree lattice*, Internat. J. Math.**3**(1992), no. 6, 717–797. MR**1194071**, DOI 10.1142/S0129167X92000357 - Hyman Bass and Alexander Lubotzky,
*Tree lattices*, Progress in Mathematics, vol. 176, Birkhäuser Boston, Inc., Boston, MA, 2001. With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits. MR**1794898**, DOI 10.1007/978-1-4612-2098-5 - F. Cipriani, D. Guido, T. Isola.
*A C$^{*}$-algebra of geometric operators on self-similar CW-complexes. Novikov–Shubin and L$^{2}$-Betti numbers*, accepted for publication in the Journal of Functional Analysis. - Bryan Clair and Shahriar Mokhtari-Sharghi,
*Zeta functions of discrete groups acting on trees*, J. Algebra**237**(2001), no. 2, 591–620. MR**1816705**, DOI 10.1006/jabr.2000.8600 - Bryan Clair and Shahriar Mokhtari-Sharghi,
*Convergence of zeta functions of graphs*, Proc. Amer. Math. Soc.**130**(2002), no. 7, 1881–1886. MR**1896018**, DOI 10.1090/S0002-9939-02-06532-2 - G. Elek.
*Aperiodic order, integrated density of states and the continuous algebras of John von Neumann*, preprint 2006, arXiv:math-ph/0606061. - Michael Farber,
*Geometry of growth: approximation theorems for $L^2$ invariants*, Math. Ann.**311**(1998), no. 2, 335–375. MR**1625742**, DOI 10.1007/s002080050190 - Dominique Foata and Doron Zeilberger,
*A combinatorial proof of Bass’s evaluations of the Ihara-Selberg zeta function for graphs*, Trans. Amer. Math. Soc.**351**(1999), no. 6, 2257–2274. MR**1487614**, DOI 10.1090/S0002-9947-99-02234-5 - Bent Fuglede and Richard V. Kadison,
*Determinant theory in finite factors*, Ann. of Math. (2)**55**(1952), 520–530. MR**52696**, DOI 10.2307/1969645 - Rostislav I. Grigorchuk and Andrzej Żuk,
*The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps*, Random walks and geometry, Walter de Gruyter, Berlin, 2004, pp. 141–180. MR**2087782** - Daniele Guido and Tommaso Isola,
*A semicontinuous trace for almost local operators on an open manifold*, Internat. J. Math.**12**(2001), no. 9, 1087–1102. MR**1871337**, DOI 10.1142/S0129167X01001106 - Daniele Guido and Tommaso Isola,
*Dimensions and spectral triples for fractals in $\Bbb R^N$*, Advances in operator algebras and mathematical physics, Theta Ser. Adv. Math., vol. 5, Theta, Bucharest, 2005, pp. 89–108. MR**2238285** - D. Guido, T. Isola, M. L. Lapidus.
*Ihara zeta functions for periodic simple graphs*, $C^ *$-algebras and elliptic theory II-papers from the International Conference held in Bedlewo, January 2006, 103–121. Edited by Burghelea, D.; Melrose, R.; Mishchenko, A.; Troitsky, E. Trends in Mathematics. Birkhäuser Verlag, Basel, 2008. - D. Guido, T. Isola, M. L. Lapidus.
*Ihara’s zeta function for periodic graphs and its approximation in the amenable case*, Journal of Functional Analysis**255**(2008), 1339-1361. - Ben M. Hambly and Takashi Kumagai,
*Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries*, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 233–259. MR**2112125** - Ki-ichiro Hashimoto and Akira Hori,
*Selberg-Ihara’s zeta function for $p$-adic discrete groups*, Automorphic forms and geometry of arithmetic varieties, Adv. Stud. Pure Math., vol. 15, Academic Press, Boston, MA, 1989, pp. 171–210. MR**1040608**, DOI 10.2969/aspm/01510171 - Ki-ichiro Hashimoto,
*Zeta functions of finite graphs and representations of $p$-adic groups*, Automorphic forms and geometry of arithmetic varieties, Adv. Stud. Pure Math., vol. 15, Academic Press, Boston, MA, 1989, pp. 211–280. MR**1040609**, DOI 10.2969/aspm/01510211 - Ki-ichiro Hashimoto,
*On zeta and $L$-functions of finite graphs*, Internat. J. Math.**1**(1990), no. 4, 381–396. MR**1080105**, DOI 10.1142/S0129167X90000204 - Ki-ichiro Hashimoto,
*Artin type $L$-functions and the density theorem for prime cycles on finite graphs*, Internat. J. Math.**3**(1992), no. 6, 809–826. MR**1194073**, DOI 10.1142/S0129167X92000370 - Matthew D. Horton, H. M. Stark, and Audrey A. Terras,
*What are zeta functions of graphs and what are they good for?*, Quantum graphs and their applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 173–189. MR**2277616**, DOI 10.1090/conm/415/07868 - Yasutaka Ihara,
*On discrete subgroups of the two by two projective linear group over ${\mathfrak {p}}$-adic fields*, J. Math. Soc. Japan**18**(1966), 219–235. MR**223463**, DOI 10.2969/jmsj/01830219 - Motoko Kotani and Toshikazu Sunada,
*Zeta functions of finite graphs*, J. Math. Sci. Univ. Tokyo**7**(2000), no. 1, 7–25. MR**1749978** - Bernhard Krön,
*Green functions on self-similar graphs and bounds for the spectrum of the Laplacian*, Ann. Inst. Fourier (Grenoble)**52**(2002), no. 6, 1875–1900 (English, with English and French summaries). MR**1954327**, DOI 10.5802/aif.1937 - B. Krön,
*Growth of self-similar graphs*, J. Graph Theory**45**(2004), no. 3, 224–239. MR**2037759**, DOI 10.1002/jgt.10157 - Bernhard Krön and Elmar Teufl,
*Asymptotics of the transition probabilities of the simple random walk on self-similar graphs*, Trans. Amer. Math. Soc.**356**(2004), no. 1, 393–414. MR**2020038**, DOI 10.1090/S0002-9947-03-03352-X - Michel L. Lapidus and Machiel van Frankenhuysen,
*Fractal geometry and number theory*, Birkhäuser Boston, Inc., Boston, MA, 2000. Complex dimensions of fractal strings and zeros of zeta functions. MR**1726744**, DOI 10.1007/978-1-4612-5314-3 - Michel L. Lapidus and Machiel van Frankenhuijsen,
*Fractal geometry, complex dimensions and zeta functions*, Springer Monographs in Mathematics, Springer, New York, 2006. Geometry and spectra of fractal strings. MR**2245559**, DOI 10.1007/978-0-387-35208-4 - Hirobumi Mizuno and Iwao Sato,
*Bartholdi zeta functions of some graphs*, Discrete Math.**306**(2006), no. 2, 220–230. MR**2203806**, DOI 10.1016/j.disc.2005.08.007 - Bojan Mohar,
*The spectrum of an infinite graph*, Linear Algebra Appl.**48**(1982), 245–256. MR**683222**, DOI 10.1016/0024-3795(82)90111-2 - Bojan Mohar and Wolfgang Woess,
*A survey on spectra of infinite graphs*, Bull. London Math. Soc.**21**(1989), no. 3, 209–234. MR**986363**, DOI 10.1112/blms/21.3.209 - Sam Northshield,
*A note on the zeta function of a graph*, J. Combin. Theory Ser. B**74**(1998), no. 2, 408–410. MR**1654160**, DOI 10.1006/jctb.1998.1861 - Sam Northshield,
*Two proofs of Ihara’s theorem*, Emerging applications of number theory (Minneapolis, MN, 1996) IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 469–478. MR**1691545**, DOI 10.1007/978-1-4612-1544-8_{1}9 - John Roe,
*An index theorem on open manifolds. I, II*, J. Differential Geom.**27**(1988), no. 1, 87–113, 115–136. MR**918459** - Jean-Pierre Serre,
*Trees*, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR**607504**, DOI 10.1007/978-3-642-61856-7 - Jean-Pierre Serre,
*Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_p$*, J. Amer. Math. Soc.**10**(1997), no. 1, 75–102 (French). MR**1396897**, DOI 10.1090/S0894-0347-97-00220-8 - H. M. Stark and A. A. Terras,
*Zeta functions of finite graphs and coverings*, Adv. Math.**121**(1996), no. 1, 124–165. MR**1399606**, DOI 10.1006/aima.1996.0050 - H. M. Stark and A. A. Terras,
*Zeta functions of finite graphs and coverings. II*, Adv. Math.**154**(2000), no. 1, 132–195. MR**1780097**, DOI 10.1006/aima.2000.1917 - A. A. Terras and H. M. Stark,
*Zeta functions of finite graphs and coverings. III*, Adv. Math.**208**(2007), no. 1, 467–489. MR**2304325**, DOI 10.1016/j.aim.2006.03.002 - Toshikazu Sunada,
*$L$-functions in geometry and some applications*, Curvature and topology of Riemannian manifolds (Katata, 1985) Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp. 266–284. MR**859591**, DOI 10.1007/BFb0075662 - R. Exel.
*Rotation numbers for automorphisms of $C^*$ algebras*, Pacific J. Math.**127**(1987), 31-89.

## Additional Information

**Daniele Guido**- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, I–00133 Roma, Italy
- Email: guido@mat.uniroma2.it
**Tommaso Isola**- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, I–00133 Roma, Italy
- Email: isola@mat.uniroma2.it
**Michel L. Lapidus**- Affiliation: Department of Mathematics, University of California, Riverside, California 92521-0135
- Email: lapidus@math.ucr.edu
- Received by editor(s): May 31, 2007
- Published electronically: December 29, 2008
- Additional Notes: The first and second authors were partially supported by MIUR, GNAMPA and by the European Network “Quantum Spaces - Noncommutative Geometry” HPRN-CT-2002-00280

The third author was partially supported by the National Science Foundation, the Academic Senate of the University of California, and GNAMPA - © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**361**(2009), 3041-3070 - MSC (2000): Primary 11M41, 46Lxx, 05C38; Secondary 05C50, 28A80, 11M36, 30D05
- DOI: https://doi.org/10.1090/S0002-9947-08-04702-8
- MathSciNet review: 2485417