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GREEN’S MATRICES OF SECOND ORDER ELLIPTIC SYSTEMS
WITH MEASURABLE COEFFICIENTS
IN TWO DIMENSIONAL DOMAINS

HONGJIE DONG AND SEICK KIM

Abstract. We study Green’s matrices for divergence form, second order
strongly elliptic systems with bounded measurable coefficients in two dimen-
sional domains. We establish existence, uniqueness, and pointwise estimates
of Green’s matrices.

1. Introduction

In this article, we study Green’s matrices for divergence form, second order
strongly elliptic systems with bounded measurable coefficients in two dimensional
domains. More precisely, we are concerned with the Green’s matrix for elliptic
systems

N∑
j=1

Liju
j :=

N∑
j=1

2∑
α,β=1

Dα(Aαβ
ij (x)Dβuj), i = 1, . . . , N,

in an open connected set Ω ⊂ R
2. Here, Aαβ

ij (x) are bounded measurable functions
on Ω satisfying the strong ellipticity condition.

By a Green’s matrix we mean an N × N matrix valued function G(x, y) =
(Gij(x, y))N

i,j=1 defined on {(x, y) ∈ Ω×Ω : x �= y} satisfying the following proper-
ties (see Theorem 2.12 below for a more precise statement):

N∑
j=1

LijGjk(·, y) = −δikδy(·) ∀y ∈ Ω,

Gij(·, y) = 0 on ∂Ω ∀y ∈ Ω,

where δik is the Kronecker delta symbol and δy(·) is the Dirac delta function with
a unit mass at y. In the scalar case (i.e., when N = 1), the Green’s matrix becomes
a real valued function and is usually called the Green’s function.
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We prove that if Ω has either finite volume or finite width, then there exists
a unique Green’s matrix in Ω; see Theorem 2.12. The same is true when Ω is
a domain above a Lipschitz graph (e.g., Ω = R

2
+); see Theorem 2.21. We also

establish growth properties of the Green’s matrices including logarithmic pointwise
bounds. We emphasize that we do not require Ω to be bounded nor to have a regular
boundary in Theorem 2.12. Compared to the result of Dolzmann and Müller [4],
where Ω is assumed to be a bounded Lipschitz domain (in fact, their methods work
whenever there exists an Lp-theory for the equation under consideration on the
domain), our result is quite an improvement in this respect. Although there is no
Green’s matrix for Ω = R

2, there is a possible definition of a fundamental matrix
in the entire plane. Such a construction was carried out by Kenig and Ni [12] in the
scalar case and by Auscher, McIntosh, and Tchamitchian [1] in the systems setting.
(In fact, Auscher et al. considered elliptic equations with complex coefficients in
[1], but with appropriate changes their strategy carries over to more general elliptic
systems.) For the completeness of presentation, we include the result of Auscher et
al. [1] in Section 5.

Let us briefly review the history of works in this area. In the scalar case, the basic
facts about Green’s functions of symmetric elliptic operators in bounded domains
were proved by Littman, Stampacchia, and Weinberger [16]. The study of the
Green’s functions for nonsymmetric elliptic operators in bounded domains Ω ⊂ R

n

(n ≥ 3) was carried out by Grüter and Widman [9]. As it was mentioned earlier,
there is no Green’s function for Ω = R

2; the fundamental solution −(1/2π) ln |x−y|
of the Laplace equation changes sign and is not considered a Green’s function from
a point of view of classical potential theory (see, e.g., [5]). Nevertheless, it is still
possible to define a fundamental solution in R

2. By using the maximum principle,
Kenig and Ni [12] constructed one for symmetric elliptic operators. In [2], Chanillo
and Li derived that the fundamental solution constructed by Kenig and Ni is a
function of bounded mean oscillation in R

2. Also, we would like to bring the
reader’s attention to a paper by Escauriaza [6] on the fundamental solutions of
elliptic and parabolic equations in nondivergence form. In the systems setting, the
Green’s matrices of the elliptic systems with continuous coefficients in bounded C1

domains have been discussed by Fuchs [7] and Dolzmann and Müller [4]. In fact,
Dolzmann and Müller improved the strategy of Fuchs and showed the existence
and pointwise estimate for Green’s matrix in bounded Lipschitz domains Ω ⊂ R

2

without imposing any regularity on the coefficients (their methods work whenever
an Lp theory is available for the domain Ω). Recently, Hofmann and Kim [10] gave
a unified approach in studying Green’s functions/matrices in arbitrary domains
Ω ⊂ R

n (n ≥ 3) valid for both scalar equations and systems of elliptic type by
considering a class of operators L such that weak solutions of Lu = 0 satisfy an
interior Hölder estimate. However, like the method used in Grüter and Widman
[9], the method of Hofmann and Kim relied heavily on the assumption that n ≥ 3
and could not be applied to the two dimensional case. A parabolic extension of the
result by Hofmann and Kim was carried out in a very recent paper by Cho, Dong,
and Kim [3]. In particular, Cho et al. proved that the so-called “Dirichlet heat
kernel” of a strongly elliptic system exists in any domain Ω ⊂ R

2 (see Corollary 2.9
in [3]). In fact, our basic strategy is to make use of their result and construct the
Green’s matrix out of the “Dirichlet heat kernel” by integrating in a t-variable.

The organization of this paper is as follows. In Section 2, we introduce some
notation and then state our main results, Theorem 2.12 and Theorem 2.21. We
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give the proof of Theorem 2.12 in Section 3 and that of Theorem 2.21 in Sec-
tion 4. Finally, in Section 5 we introduce the result of Auscher et al. [1] regarding
construction of a fundamental matrix for an elliptic system in the entire plane.

2. Preliminaries and main results

2.1. Strongly elliptic systems in R
2. Throughout this article, the summation

convention over repeated indices shall be assumed. Let L be a second order elliptic
operator of divergence type acting on vector valued functions u = (u1, . . . , uN )T

(N ≥ 1) defined on an open set Ω ⊂ R
2 in the following way:

(2.1) Lu = Dα(Aαβ Dβu)

⎛
⎝:=

2∑
α=1

2∑
β=1

Dα(Aαβ Dβu)

⎞
⎠ ,

where Aαβ = Aαβ(x) (α, β = 1, 2) are N by N matrices satisfying the strong
ellipticity condition; i.e., there is a number λ > 0 such that

(2.2) Aαβ
ij (x)ξj

βξi
α ≥ λ |ξ|2 := λ

N∑
i=1

2∑
α=1

|ξi
α|2 ∀x ∈ Ω.

We also assume that Aαβ
ij are bounded; i.e., there is a number Λ > 0 such that

(2.3)
N∑

i,j=1

2∑
α,β=1

|Aαβ
ij (x)|2 ≤ Λ2 ∀x ∈ Ω.

We do not impose any further condition other than (2.2) and (2.3) on the co-
efficients. Especially, we do not assume the symmetry of the coefficients. The
transpose operator tL of L is defined by

(2.4) tLu = Dα(tAαβDβu),

where tAαβ = (Aβα)T (i.e., tAαβ
ij = Aβα

ji ). Note that the coefficients tAαβ
ij satisfy

the conditions (2.2), (2.3) with the same constants λ, Λ.

2.2. The function space Y 1,2
0 (Ω). The function space Y 1,2

0 (Ω) is defined as the set
of all weakly differentiable functions on Ω such that Du ∈ L2(Ω) and uη ∈ W 1,2

0 (Ω)
for any η ∈ C∞

c (R2). An open set Ω ⊂ R
2 is said to be a Green domain if

{u1Ω : u ∈ C∞
c (R2)} �⊂ W 1,2

0 (Ω). We ask the readers to refer to [17, §1.3.4] for the
proofs of lemmas stated below.

Lemma 2.5. Let Ω ⊂ R
2 be a Green domain and B ⊂ R

2 be a ball. Then, there is
a constant C = C(Ω, B) such that

(2.6) ‖u‖L2(Ω∩B) ≤ C‖Du‖L2(Ω) ∀u ∈ Y 1,2
0 (Ω).

Lemma 2.7. Let Ω ⊂ R
2 be a Green domain. Then Y 1,2

0 (Ω) is a Hilbert space
when endowed with the inner product

(2.8) 〈u, v〉 :=
∫

Ω

DiuDiv.
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Lemma 2.9. Let Ω ⊂ R
2 be a Green domain. Then C∞

c (Ω) is a dense subset of
the Hilbert space Y 1,2

0 (Ω) equipped with the inner product (2.8).

For a given function f = (f1, . . . , fN )T ∈ L1
loc(Ω)N , we shall say that u =

(u1, . . . , uN )T is a weak solution in Y 1,2
0 (Ω)N of Lu = −f if u ∈ Y 1,2

0 (Ω)N and

(2.10)
∫

Ω

Aαβ
ij DβujDαφi =

∫
Ω

f iφi ∀φ ∈ C∞
c (Ω)N .

It is routine to check that if Ω is a Green domain and u is a weak solution in
Y 1,2

0 (Ω)N of Lu = 0, then u ≡ 0. Therefore, a weak solution in Y 1,2
0 (Ω)N of

Lu = −f is unique.

2.3. Main results. Let us state our main results. First, we consider domains with
either finite volume or finite width. We shall denote by |Ω| the Lebesgue measure
of Ω and by δ(Ω) the width of Ω ⊂ R

2; more precisely, we define
(2.11)

δ(Ω) := inf {dist(
1, 
2) : Ω lies between two parallel lines 
1, 
2} ; inf ∅ = ∞.

Theorem 2.12. Let the operator L satisfy the conditions (2.2) and (2.3). Assume
that Ω ⊂ R

2 is an open connected set with either finite volume or finite width so
that

(2.13) γ = γ(Ω) := max
(
|Ω|−1, δ(Ω)−2

)
> 0.

Then, there exists a Green’s matrix G(x, y) = (Gij(x, y))N
i,j=1 defined on {(x, y) ∈

Ω × Ω : x �= y} satisfying the properties that

(2.14)
∫

Ω

Aαβ
ij DβGjk(·, y)Dαφi = φk(y) ∀φ ∈ C∞

c (Ω)N

and that for all η ∈ C∞
c (Ω) satisfying η ≡ 1 on Br(y) for some r < dy,

(2.15) (1 − η)G(·, y) ∈ Y 1,2
0 (Ω)N×N .

The Green’s matrix G(x, y) in Ω is unique in the following sense:
(a) G(x, y) is continuous in {(x, y) ∈ Ω × Ω : x �= y}.
(b) G(x, ·) is locally integrable for all x ∈ Ω.
(c) For any f = (f1, . . . , fN )T ∈ C∞

c (Ω)N , the function u = (u1, . . . , uN )T

given by

(2.16) u(x) :=
∫

Ω

G(x, y)f(y) dy

(
i.e., ui(x) :=

∫
Ω

Gij(x, y)f j(y) dy

)

is a unique weak solution in Y 1,2
0 (Ω)N of Lu = −f .

Moreover, G(x, y) satisfies the following pointwise estimate:

(2.17) |G(x, y)| ≤ C

(
1

γR2
+ ln

R

|x − y|

)
if |x − y| < R := 1

2 max(dx, dy),

where dx := dist(x, ∂Ω) and C =C(λ, Λ, N) < ∞. Consequently, G(·, y) and G(x, ·)
belong to Lp(Br(y)∩Ω) and Lp(Br(x)∩Ω), respectively, for all r > 0 and p ∈ [1,∞).
Furthermore, DG(·, y) and DG(x, ·) belong to Lp(Br(y) ∩ Ω) and Lp(Br(x) ∩ Ω),
respectively, for all r > 0 and p ∈ [1, 2). Finally, we have the following symmetry
relation:

(2.18) G(y, x) = tG(x, y)T ( i.e., Gij(y, x) = tGji(x, y) ),

where tG(x, y) is the Green’s matrix of the transpose operator tL in Ω.
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Remark 2.19. When |Ω| < ∞, we have global Lp estimates for the Green’s matrix
and its derivatives. In that case, it will be evident from the proof of Theorem 2.12
that G(·, y) and G(x, ·) belong to Lp(Ω) for all p ∈ [1,∞) and that DG(·, y) and
DG(x, ·) belong to Lp(Ω) for all p ∈ [1, 2).

Next, we consider a domain above a Lipschitz graph. Let Ω be given by

(2.20) Ω = {(x1, x2) ∈ R
2 : x2 > ϕ(x1)},

where ϕ : R → R is a Lipschitz function with a Lipschitz constant M := ‖ϕ′‖∞ <
∞.

Theorem 2.21. Let the operator L satisfy the conditions (2.2) and (2.3). Assume
that Ω is given by (2.20). Then, there exists a unique Green’s matrix G(x, y)
satisfying all the properties of Theorem 2.12 except (2.17). Instead of (2.17) from
Theorem 2.12, we have
(2.22)

|G(x, y)| ≤ C min
{
1 + ln+(dx,y/|x − y|), dµ

x,y|x − y|−µ
}

∀x, y ∈ Ω, x �= y,

where dx,y := min(dx, dy), dx := dist(x, ∂Ω), ln+ t := max(ln t, 0), C =
C(λ, Λ, N, M) < ∞, and µ = µ(λ, Λ, M) ∈ (0, 1). In particular, (2.22) implies
G(x, y) → 0 as |x − y| → ∞.

3. Proof of Theorem 2.12

Throughout this section, we employ the letter C to denote a constant depending
on λ, Λ, N while we use C(α, β, . . .) to denote a constant depending on quantities
α, β, . . . , as well as λ, Λ, N . It should be understood that C may vary from line to
line.

Let us recall the following version of Poincaré inequality (see, e.g., [8] for the
proof).

Lemma 3.1. If Ω ⊂ R
2 is an open connected set with either finite volume or finite

width, let γ be given as in (2.13) of Theorem 2.12. Then

(3.2) ‖u‖L2(Ω) ≤ (2γ)−1/2‖Du‖L2(Ω) ∀u ∈ W 1,2
0 (Ω).

By using the above lemma, one can show that if Ω has either finite volume or
finite width, then Ω is a Green domain and Y 1,2

0 (Ω) = W 1,2
0 (Ω) (see, e.g., [17,

§1.3.4]). In the rest of this section we shall identify Y 1,2
0 (Ω) with W 1,2

0 (Ω).

3.1. Construction of the Green’s matrix. Let Γ(t, x, s, y) (x, y ∈ Ω and t, s ∈
R) be the parabolic Green’s matrix given as in [3, Corollary 2.9]. Note that we
have Γ(t, x, s, y) = Γ(t − s, x, 0, y). Throughout the paper, we shall denote

K(t, x, y) := Γ(t, x, 0, y),(3.3)

K̃(t, x, y) :=
∫ t

0

K(s, x, y) ds.(3.4)
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Here we record some properties of K(t, x, y) (x, y ∈ Ω and t ∈ R) derived in [3,
Corollary 2.9] for the reference. Recall that dx := dist(x, ∂Ω) for x ∈ Ω.

sup
t∈(r2,∞)

∫
Ω

|K(t, x, y)|2 dx ≤ Cr−2 ∀y ∈ Ω ∀r < dy,

(3.5)

∫∫
(0,∞)×Ω\(0,r2)×Br(y)

|K(t, x, y)|4 dx dt ≤ Cr−4 ∀y ∈ Ω ∀r < dy,

(3.6)

∫∫
(0,∞)×Ω\(0,r2)×Br(y)

|DxK(t, x, y)|2 dx dt ≤ Cr−2 ∀y ∈ Ω ∀r < dy,

(3.7)

∫∫
(0,r2)×Br(y)

|K(t, x, y)|p dx dt ≤ C(p)r−2p+4 ∀y ∈ Ω ∀r < dy ∀p ∈ [1, 2),

(3.8)

∫∫
(0,r2)×Br(y)

|DxK(t, x, y)|p dx dt ≤ C(p)r−3p+4 ∀y∈Ω ∀r<dy ∀p∈ [1, 4/3),

(3.9)

|K(t, x, y)| ≤ C
{
max

(√
|t|, |x − y|

)}−2

if 0<max
(√

|t|, |x − y|
)
< 1

2 max(dx, dy).

(3.10)

We define the Green’s matrix G(x, y) as follows:

(3.11) G(x, y) := lim
t→∞

K̃(t, x, y) =
∫ ∞

0

K(s, x, y) ds ∀x, y ∈ Ω, x �= y.

The next lemma will show that G(x, y) is well defined.

Lemma 3.12. For any x, y ∈ Ω with x �= y, we have
∫ ∞
0

|K(s, x, y)| ds < ∞.

Proof. By [3, Theorem 2.7], we know that t �→ K(t, x, y) is continuous in t ∈ R

for x �= y. Therefore, we only need to show that
∫ ∞

a
|K(t, x, y)| dt < ∞ for some

a > 0. Let u be the k-th column of K(·, ·, y). Then, by the local boundedness
estimate (see [13])

(3.13) |u(t, x)| ≤ C

(∫ t

t−ρ2

∫
Bρ(x)

|u(s, y)|2 dy ds

)1/2

∀t > ρ2 ∀ρ < dx.

By (3.2) of Lemma 3.1, I(t) :=
∫
Ω
|u(t, ·)|2 satisfies

I ′(t) = −2
∫

Ω

Aαβ
ij DβujDαui(t, ·) ≤ −2λ

∫
Ω

|Du(t, ·)|2 ≤ −4λγI(t) ∀t > 0.

Therefore, by using (3.5) we obtain

(3.14)
∫

Ω

|K(t, ·, y)|2 ≤ Ce−4λγ(t−r2)r−2 ∀t > r2 ∀r < dy.

By combining (3.13) and (3.14) we have

(3.15) |K(t, x, y)| ≤ Ae−2λγt ∀t > a,

where A = A(dx, dy) < ∞ and a = a(dx, dy) < ∞. The lemma is proved. �
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Next, we show that G(·, y) is continuous in Ω \ {y} for any y ∈ Ω. We need the
following lemma, the proof of which can be found in [13, Theorem 3.3] (cf. (2.20)
and (2.21) in [3]).

Lemma 3.16. Let L satisfy (2.2) and (2.3). If u(t, x) is a weak solution of ut −
Lu = 0 in Q−

2r := Q−
2r

(
(t0, x0)

)
(:= (t0 − 4r2, t0) × B2r(x0)), then for all x, x′ ∈

Br(x0) and t ∈ (t0 − r2, t0),

|u(x, t) − u(x′, t)| ≤ C|x − x′|µr−(1+µ)‖Dxu‖L2(Q−
2r),

|u(x, t) − u(x′, t)| ≤ C|x − x′|µr−(2+µ)‖u‖L2(Q−
2r),

where µ = µ(λ, Λ) ∈ (0, 1).

Let u(t, x) be the k-th column of K(t, x, y). Fix x0 ∈ Ω with x0 �= y and choose
r > 0 such that r < dy and B2r(x0) ⊂ Ω \ Br(y). By [3, Therem 2.7] and (3.3),
we find that u(t, x) is a weak solution of ut − Lu = 0 in Q−

2r

(
(t0, x0)

)
for any

t0 ∈ R. Therefore, by using Lemma 3.16, (3.5), (3.7), and (3.14) we have (recall
that K(t, x, y) ≡ 0 for t < 0)

|K(t, x, y) − K(t, x0, y)| ≤ C|x − x0|µr−(2+µ) ∀x ∈ Br(x0) ∀t ∈ R,

(3.17)

|K(t, x, y) − K(t, x0, y)| ≤ C|x − x0|µr−(2+µ)e−2λγ(t−r2) ∀x ∈ Br(x0) ∀t > 5r2.

(3.18)

Then, for any x ∈ Br(x0), we have

|G(x, y) − G(x0, y)| ≤
∫ 5r2

0

|K(t, x, y) − K(t, x0, y)| dt

+
∫ ∞

5r2
|K(t, x, y) − K(t, x0, y)| dt

≤ C|x − x0|µr−µ(1 + r−2γ−1).

(3.19)

Therefore, we find that G(·, y) is locally Hölder continuous in Ω\ {y}. Let tG(x, y)
be the Green’s matrix of the transpose operator tL in Ω; i.e.,

(3.20) tG(x, y) := lim
t→∞

tK̃(t, x, y) =
∫ ∞

0

tK(s, x, y) ds ∀x, y ∈ Ω, x �= y,

where tK(t, x, y) and tK̃(t, x, y) are defined similarly as in (3.3) and (3.4). Let
tΓ(s, y, t, x) be the parabolic Green’s matrix of tL := −∂t − tL constructed as in
[3]. Then by [3, Lemma 3.5]

(3.21) tK(t, x, y) = tΓ(−t, x, 0, y) = Γ(0, y,−t, x)T = K(t, y, x)T ,

and thus we conclude that

(3.22) tK̃(t, x, y) = K̃(t, y, x)T and tG(x, y) = G(y, x)T .

In particular, we proved (2.18). Since tL satisfies (2.2) and (2.3) with the same
λ, Λ, we find as in (3.19) that tG(·, x) is locally Hölder continuous in Ω \ {x}
for all x ∈ Ω. Therefore, by (2.18) we conclude that G(x, y) is continuous in
{(x, y) ∈ Ω × Ω : x �= y}.

Next, we prove that G(x, ·) is locally integrable for all x ∈ Ω and that u defined
by (2.16) is a weak solution in W 1,2

0 (Ω)N of Lu = −f .
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Lemma 3.23. The following estimates hold uniformly for all t > 0 and for all
y ∈ Ω:

‖K̃(t, ·, y)‖Lp(Bρ(y)) ≤ C(p)γ−1ρ2/p−2 ∀p ∈ [1, 2), where ρ = dy,(3.24)

‖K̃(t, ·, y)‖L4(Ω\Br(y)) ≤ Cγ−1r−3/2 ∀r ≤ dy,(3.25)

‖DK̃(t, ·, y)‖Lp(Bρ(y)) ≤ C(p)γ−1ρ2/p−3 ∀p ∈ [1, 4/3), where ρ = dy,(3.26)

‖DK̃(t, ·, y)‖L2(Ω\Br(y)) ≤ Cγ−1r−2 ∀r ≤ dy.(3.27)

Proof. We begin by proving (3.24). Fix p ∈ [1, 2). By Minkowski’s inequality, we
have

(∫
Bρ(y)

|K̃(t, x, y)|p dx

)1/p

≤
∫ t

0

(∫
Bρ(y)

|K(s, x, y)|p dx

)1/p

ds

≤
∫ ρ2

0

+
∫ ∞

ρ2

(∫
Bρ(y)

|K(s, x, y)|p dx

)1/p

ds := I1+I2.(3.28)

We estimate I1 by using Hölder’s inequality and (3.8) as follows:

(3.29) I1 ≤
(∫ ρ2

0

∫
Bρ(y)

|K(s, x, y)|p dx ds

)1/p

ρ2(1−1/p) ≤ C(p)ρ2/p.

To estimate I2, observe that Hölder’s inequality and (3.14) yield (recall 1 ≤ p < 2)

(∫
Bρ(y)

|K(s, x, y)|p dx

)1/p

≤
(∫

Bρ(y)

|K(s, x, y)|2 dx

)1/2

|Bρ(y)|1/p−1/2

≤ C(p)ρ2/p−2e−2λγ(s−ρ2) ∀s > ρ2.

Therefore, we obtain

(3.30) I2 ≤ C(p)ρ2/p−2

∫ ∞

ρ2
e−2λγ(s−ρ2) ds ≤ C(p)ρ2/p−2γ−1.

Since 1 ≤ ρ−2γ−1 in any case, we obtain (3.24) by combining (3.29) and (3.30).
Next, we prove (3.25). By using Minkowski’s inequality as in (3.28), we have

(∫
Ω\Br(y)

|K̃(t, x, y)|4 dx

)
1/4 ≤

∫ r2

0

+
∫ ∞

r2

(∫
Ω\Br(y)

|K(s, x, y)|4 dx

)1/4

ds

:= I3 + I4.

By proceeding as in (3.29) but using (3.6) instead, we obtain

(3.31) I3 ≤
(∫ r2

0

∫
Ω\Br(y)

|K(s, x, y)|4 dx ds

)1/4

r2(1−1/4) ≤ Cr1/2.
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By a well known embedding theorem (see, e.g., [14, §II.3] or [15, Theorem 6.9]),
the energy inequality, and (3.14), we have for t > r2

∫ ∞

t

∫
Ω

|K(s, x, y)|4 dx ds ≤ C

(
sup
t≤s

∫
Ω

|K(s, x, y)|2 dx

) ∫ ∞

t

∫
Ω

|DxK(s, x, y)|2 dx ds

≤ C

(∫
Ω

|K(t, x, y)|2 dx

)2

≤ Cr−4e−8λγ(t−r2).(3.32)

Then, by using Hölder’s inequality and (3.32) we estimate

I4 ≤
∞∑

j=1

(∫ (j+1)r2

jr2

∫
Ω

|K(s, x, y)|4 dx ds

)1/4

r3/2 ≤ Cr1/2
∞∑

j=1

e−2λγ(j−1)r2

≤ Cr1/2(1 + r−2γ−1).(3.33)

By combining (3.31) and (3.33), we get (3.25).
We now turn to the proof of (3.26). Fix p ∈ [1, 4/3). As in (3.28), we have

(∫
Bρ(y)

|DxK̃(t, x, y)|p dx

)1/p

≤
∫ ρ2

0

+
∫ ∞

ρ2

(∫
Bρ(y)

|DxK(s, x, y)|p dx

)1/p

ds := I5 + I6.

By Hölder’s inequality and (3.9), we find

(3.34) I5 ≤
(∫ ρ2

0

∫
Bρ(y)

|DxK(s, x, y)|p dx ds

)1/p

ρ2(1−1/p) ≤ C(p)ρ−1+2/p.

To estimate I6, note that Hölder’s inequality implies (recall 1 ≤ p < 4/3)
(3.35)(∫

Bρ(y)

|DxK(s, x, y)|p
)1/p

≤
(∫

Bρ(y)

|DxK(s, x, y)|2
)1/2

|Bρ(y)|1/p−1/2.

As in (3.32), the energy inequality and (3.14) yield

(3.36)
∫ ∞

t

∫
Ω

|DxK(s, x, y)|2 dx ds ≤ Cρ−2e−4λγ(t−ρ2) ∀t > ρ2.

Then, as in (3.33), we estimate I6 by combining (3.35) and (3.36):

I6 ≤ C(p)ρ2/p
∞∑

j=1

(∫ (j+1)ρ2

jρ2

∫
Ω

|DxK(s, x, y)|2 dx ds

)1/2

≤ C(p)ρ2/p−1(1 + ρ−2γ−1).

(3.37)

We obtain (3.26) by adding (3.34) and (3.37).
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Finally, we prove (3.27). By using Minkowski’s inequality again, we have(∫
Ω\Br(y)

|DxK̃(t, x, y)|2 dx

)1/2

≤
∫ r2

0

+
∫ ∞

r2

(∫
Ω\Br(y)

|DxK(s, x, y)|2 dx

)1/2

ds := I7 + I8.

We estimate I7 by using Hölder’s inequality and (3.7):

(3.38) I7 ≤
(∫ r2

0

∫
Ω\Br(y)

|DxK(s, x, y)|2 dx ds

)1/2

r ≤ C.

Also, by using (3.36) and proceeding as in (3.37), we obtain

(3.39) I8 ≤ r

∞∑
j=1

(∫ (j+1)r2

jr2

∫
Ω

|DxK(s, x, y)|2 dx ds

)1/2

≤ C(1 + r−2γ−1).

Therefore, (3.27) follows from (3.38) and (3.39). The lemma is proved. �

Fix p0 ∈ (1, 2) and r ≤ dy. By (3.11) and (3.24), there exists a sequence {tm}∞m=1

tending to infinity such that K̃(tm, ·, y) ⇀ G(·, y) weakly in Lp0(Br(y)), and thus
we have

‖G(·, y)‖Lp0 (Br(y)) ≤ C(p0, γ, dy, r) < ∞ ∀r ≤ dy.

By a similar reasoning, (3.25) yields that

‖G(·, y)‖L4(Ω\Br(y)) ≤ Cγ−1r−3/2 ∀r ∈ (0, dy].

The above inequalities together with (2.18) imply that G(x, ·) is locally integrable
for any x ∈ Ω. Therefore, the integral in (2.16) is absolutely convergent for any
f ∈ C∞

c (Ω), and thus u is well defined in (2.16). Moreover, (3.24) and (3.25)
together with (3.22) imply

(3.40) v(t, x) :=
∫

Ω

K̃(t, x, y)f(y) dy

is well defined. By the dominated convergence theorem, we also find that

(3.41) lim
t→∞

v(t, x) =
∫

Ω

G(x, y)f(y) dy = u(x).

Also, by the definition of K̃(t, x, y) in (3.4), it is easy to verify

(3.42) vt(t, x) =
∫

Ω

K(t, x, y)f(y) dy ∀t > 0.

Then, as in the proof of Lemma 3.12, we have

(3.43) ‖vt(t, ·)‖2
L2(Ω) ≤ Ce−4λγt‖f‖2

L2(Ω) ∀t > 0.

We need the following lemma to show that u is a weak solution in W 1,2
0 (Ω)N

of Lu = −f . The readers are asked to consult [3] or [14] for the definition of
V̊ 1,0

2 ((0, T ) × Ω), etc.
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Lemma 3.44. For all T > 0, the function v defined in (3.40) is the unique weak
solution in V̊ 1,0

2 ((0, T ) × Ω)N of the problem

(3.45) vt − Lv = f , v = 0 on (0, T ) × ∂Ω, v(0, ·) = 0.

Proof. Let w be the weak solution in V̊ 1,0
2 ((0, T )× Ω)N of the problem (3.45), the

existence and uniqueness of which can be found in [14]. We only need to show that
v ≡ w in (0, T ) × Ω. Fix t ∈ (0, T ) and x ∈ Ω. Let tΓ(s, y, t, x) be the parabolic
Green’s matrix of tL := −∂t−tL constructed as in [3]. Then, by proceeding similarly
as in the proof of [3, Theorem 2.7], we obtain (cf. [3, Lemma 3.1])

wk(t, x) =
∫ T

0

∫
Ω

tΓik(s, y, t, x)f i(y) dy ds =
∫ T

0

∫
Ω

Γki(t, x, s, y)f i(y) dy ds

=
∫ t

0

∫
Ω

Kki(t − s, x, y)f i(y) dy ds =
∫ t

0

∫
Ω

Kki(s, x, y)f i(y) dy ds = vk(t, x),

where we have used K(t, x, y) ≡ 0 for t < 0. The lemma is proved. �

Note that (3.43) particularly implies vt(t, ·) ∈ L2(Ω)N , and thus it is not hard
to verify

(3.46)
∫

Ω

vi
t(t, ·)φi +

∫
Ω

Aαβ
ij Dvj(t, ·)Dαφi =

∫
Ω

f iφi ∀φ ∈ W 1,2
0 (Ω)N ∀t > 0.

Then, by setting φ = v(t, ·) above, we find that for almost all t > 0,

λ‖Dv(t, ·)‖2
L2(Ω) ≤

(
‖f‖L2(Ω) + ‖vt(t, ·)‖L2(Ω)

)
‖v(t, ·)‖L2(Ω)

≤ Cγ−1/2‖f‖L2(Ω)‖Dv(t, ·)‖L2(Ω),

where we have used (3.43) and Lemma 3.1. Therefore, for almost all t > 0,

(3.47) ‖Dv(t, ·)‖L2(Ω) ≤ Cγ−1/2‖f‖L2(Ω).

Then, by the weak compactness and (3.41), we find that there exists an increasing
sequence {tm}∞m=1 tending to infinity such that

(3.48) lim
m→∞

∫
Ω

Aαβ
ij Dvj(tm, ·)Dαφi =

∫
Ω

Aαβ
ij DujDαφi ∀φ ∈ W 1,2

0 (Ω)N .

Therefore, it follows from (3.43), (3.46), and (3.48) that u defined in (2.16) is a
weak solution in W 1,2

0 (Ω)N of Lu = −f .
Now, we prove the uniqueness. Suppose that there exists another matrix valued

function G̃(x, y) such that G̃(x, y) is continuous in {(x, y) ∈ Ω × Ω : x �= y}, G̃(x, ·)
is locally integrable in Ω for all x ∈ Ω, and for all f ∈ C∞

c (Ω)N , the function
ũ(x) :=

∫
Ω

G̃(x, y)f(y) dy is a weak solution of Lũ = −f in W 1,2
0 (Ω)N . Then, the

difference w := u− ũ is a weak solution of Lw = 0 in W 1,2
0 (Ω)N , and thus w ≡ 0.

Therefore, we have

(3.49)
∫

Ω

(G − G̃)(x, y)f(y) dy = 0 ∀f ∈ C∞
c (Ω)N .

We conclude from (3.49) that G(x, ·) ≡ G̃(x, ·) in Ω \ {x} for all x ∈ Ω, and thus
G(x, y) = G̃(x, y) for all x, y ∈ Ω with x �= y. We have proved the uniqueness.
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3.2. Proof of identities (2.14) and (2.15). Let us first prove (2.14). From (3.3),
(3.4) and the construction of the parabolic Green’s matrix Γ(t, x, s, y) in [3], it
follows that (cf. (3.3) in [3])

(3.50)
∫

Ω

Kki(t, ·, y)φi +
∫

Ω

Aαβ
ij DβK̃jk(t, ·, y)Dαφi = φk(y) ∀φ ∈ C∞

c (Ω)N .

We note that (3.14) yields

(3.51) lim
t→∞

∫
Ω

Kki(t, ·, y)φi = 0 ∀k = 1, . . . , N.

If we write φ = ζφ + (1 − ζ)φ, where ζ ∈ C∞
c (Br(y)) such that ζ ≡ 1 on Br/2(y),

then ∫
Ω

Aαβ
ij DβK̃jk(t, ·, y)Dαφi =

∫
Br(y)

Aαβ
ij DβK̃jk(t, ·, y)Dα(ζφi)

+
∫

Ω\Br/2(y)

Aαβ
ij DβK̃jk(t, ·, y)Dα((1 − ζ)φi) := I1(t) + I2(t).

(3.52)

By Lemma 3.23 and (3.11), we find that there exists an increasing sequence {tm}∞m=1

tending to infinity such that

lim
m→∞

I1(tm) =
∫

Br(y)

Aαβ
ij DβGjk(·, y)Dα(ζφi),(3.53)

lim
m→∞

I2(tm) =
∫

Ω\Br/2(y)

Aαβ
ij DβGjk(t, ·, y)Dα((1 − ζ)φi).(3.54)

Therefore, by combining (3.50)–(3.54), we obtain (2.14).
Next, we prove (2.15). We claim

(3.55) ‖(1 − η)K̃(t, ·, y)‖W 1,2(Ω) ≤ C(η, γ) < ∞ ∀t > 0,

where η ∈ C∞
c (Ω) is such that η ≡ 1 on Br(y) for some r < dy. Assume for the

moment that the claim is true. Then, by the weak compactness and (3.11), there
exists an increasing sequence {tm}∞m=1 tending to infinity such that

(1 − η)K̃(tm, ·, y) ⇀ (1 − η)G(·, y) weakly in W 1,2(Ω).

On the other hand, by [3, Theorem 2.7], we find that (1 − η)K̃(t, ·, y) ∈ W 1,2
0 (Ω)

for all t > 0. Since W 1,2
0 (Ω) is weakly closed in W 1,2(Ω), we have (1 − η)G(·, y) ∈

W 1,2
0 (Ω), as desired. To complete the proof of (2.15), it remains to prove the claim

(3.55). In fact, by Lemma 3.1, it is enough to show

(3.56) ‖D((1 − η)K̃(t, ·, y))‖L2(Ω) ≤ C(η) < ∞ ∀t > 0.

Let us prove (3.56). Assume that η is supported in a ball B ⊂ R
2. Then

‖D
(
(1 − η)K̃(t, ·, y)

)
‖L2(Ω) ≤ ‖1 − η‖L∞‖DK̃(t, ·, y)‖L2(Ω\Br(y))

+ ‖Dη‖L∞‖K̃(t, ·, y)‖L2(B\Br(y))

≤ C(η)‖DK̃(t, ·, y)‖L2(Ω\Br(y)) + C(η)|B|1/4‖K̃(t, ·, y)‖L4(Ω\Br(y))

≤ C(η)C(γ, r) = C(η, γ) < ∞ ∀t > 0,

(3.57)

where we have used Lemma 3.23 in the last step. This completes the proof of (3.56),
and thus (2.15) is proved.
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3.3. Proof of logarithmic bound (2.17) and Lp estimates. Without loss of
generality, we may assume dy ≥ dx; otherwise, in light of (2.18), we may exchange
the role of x and y. Note that if |x − y| < R = dy/2, then (3.10) yields

(3.58) |K(t, x, y)| ≤ C
{

max
(√

t, |x − y|
)}−2

∀t ∈ (0, R2).

On the other hand, if we set ρ = R/2 in (3.13) and r =
√

3R/2 in (3.14) (note that
ρ < dx, r < dy, and ρ2 + r2 = R2), then (3.15) becomes

(3.59) |K(t, x, y)| ≤ CR−2e−2λγ(t−R2) ∀t > R2.

Then, by using (3.58) and (3.59), we obtain (recall |x − y| < R)

|G(x, y)| ≤ C

(∫ |x−y|2

0

|x − y|−2 dt +
∫ R2

|x−y|2
t−1 dt +

∫ ∞

R2
R−2e−2λγ(t−R2) dt

)

= C
(
1 + 2 ln(R/|x − y|) + R−2(2λγ)−1

)
≤ C

(
R−2γ−1 + ln(R/|x − y|)

)
.(3.60)

We have thus proved (2.17). We now turn to the proof of local p-summability of
G(·, y) and DG(·, y). Note that (3.60) particularly implies that

(3.61) ‖G(·, y)‖Lp(Bρ(y)) ≤ C(p, dy, γ) < ∞ ∀ρ ∈ (0, dy/2] ∀p ∈ [1,∞).

We claim that |DG(·, y)| ∈ Lp(Bρ(y)) for all 0 < ρ < dy and 1 ≤ p < 2. Let u be
the k-th column of G(·, y). Then, by (2.15), we have

u ∈ W 1,2(Ω \ Bρ(y))N ∀ρ ∈ (0, dy)

and thus, by (2.14), we find that u is a weak solution of Lu = 0 in Ω\Bρ(y) for any
ρ < dy. It follows from (2.17) that there is r0 = r0(γ, dy) < 1 and C0 = C0(γ, dy) <
∞ such that

(3.62) |G(x, y)| ≤ C0 ln(1/|x − y|) ∀x ∈ Br0(y).

Fix r < r0 and let ζ ∈ C∞
c (Br(y)) be a cut-off function satisfying ζ ≡ 1 on Br/2(y)

and |Dζ| ≤ C/r. Then, by (2.15) we find

(3.63) (1 − ζ)2u ∈ W 1,2
0 (Ω′)N , where Ω′ := Ω \ Br/2(y).

Since u is a weak solution in W 1,2(Ω′)N of Lu = 0, by using (3.63) we have

0 =
∫

Ω′
(1 − ζ)2Aαβ

ij DβujDαui −
∫

Ω′
2(1 − ζ)Aαβ

ij DβujDαζ ui.

Therefore, by using the bound (3.62) we estimate∫
Ω\Br(y)

|Du|2 ≤ Cr−2

∫
Br(y)\Br/2(y)

|u|2 ≤ CC2
0 (ln(r/2))2.

Therefore, we have

(3.64)
∫

Ω\Br(y)

|DG(·, y)|2 ≤ CC2
0 (ln(r/2))2 ∀r < r0.

Next, let At = {x ∈ Ω : |DxG(x, y)| > t} and choose r = 2/t. Then by (3.64)

|At \ Br(y)| ≤ t−2

∫
At\Br(y)

|DG(·, y)|2 ≤ CC2
0 t−2(ln t)2 ∀t > 2/r0



3316 H. DONG AND S. KIM

and |At ∩ Br(y)| ≤ |Br(y)| ≤ Ct−2. Therefore, we conclude that for any y ∈ Ω,
there exist C1 = C1(γ, dy) < ∞ and t0 = t0(γ, dy) > 0 such that

(3.65) |{x ∈ Ω : |DxG(x, y)| > t}| ≤ C1t
−2(ln t)2 ∀t > t0.

From the estimates (3.65), it follows that |DG(·, y)| ∈ Lp(Br(y)) for all r < dy and
for all p ∈ [1, 2) as we shall demonstrate below. Let r < dy be given and choose
τ > t0. Note that∫

Br(y)

|DG(·, y)|p =
∫

Br(y)∩{ |DG(·,y)|≤τ}
|DG(·, y)|p

+
∫

Br(y)∩{ |DG(·,y)|>τ}
|DG(·, y)|p

≤ τp |Br(y)| +
∫
{ |DG(·,y)|>τ}

|DG(·, y)|p.

By using (3.65), we estimate (recall τ > t0)∫
{ |DG(·,y)|>τ}

|DG(·, y)|p =
∫ ∞

0

ptp−1|{|DG(·, y)| > max(t, τ )}| dt

≤ C1τ
−2(ln τ )2

∫ τ

0

ptp−1 dt + C1

∫ ∞

τ

ptp−3(ln t)2 dt.

Note that the above integrals converge if 0 < p < 2, and thus we have shown that

(3.66)
∫

Br(y)

|DG(·, y)|p ≤ C(p, γ, dy, r) < ∞ ∀r ∈ (0, dy) ∀p ∈ [1, 2).

On the other hand, (3.27) yields

(3.67) ‖DG(·, y)‖L2(Ω\Br(y)) ≤ Cγ−1r−2 ∀r ∈ (0, dy).

By combining (3.66) and (3.67), we find

(3.68) ‖DG(·, y)‖Lp(Br(y)∩Ω) < C(p, γ, dy, r) < ∞ ∀r > 0 ∀p ∈ [1, 2).

Next, for r ≥ dy/2, fix a cut-off function ζ ∈ C∞
c (B2r(y)\Bdy/4(y)) such that ζ ≡ 1

on Br(y) \ Bdy/2(y) and |Dζ| ≤ C/dy. By a similar computation as in (3.57), we
have

‖D(ζG(·, y))‖L2(B2r(y)∩Ω) ≤ C(γ, dy, r) < ∞.

Since ζG(·, y) ∈ W 1,2
0 (B2r(y) ∩ Ω), the Sobolev inequality yields

(3.69) ‖G(·, y)‖Lp(Br(y)∩Ω\Bdy/2(y)) < C(p, γ, dy, r) < ∞ ∀p ∈ [1,∞).

Then by combining (3.61) and (3.69), we obtain

(3.70) ‖G(·, y)‖Lp(Br(y)∩Ω) < C(p, γ, dy, r) < ∞ ∀r > 0 ∀p ∈ [1,∞).
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Finally, from (2.18), (3.68), and (3.70), it follows that |DG(x, ·)| belongs to
Lp(Br(x)∩Ω) for all r > 0 and 1 ≤ p < 2 and that |G(x, ·)| belongs to Lp(Br(x)∩Ω)
for all r > 0 and 1 ≤ p < ∞. This completes the proof of the theorem.

4. Proof of Theorem 2.21

Throughout this section, we employ the letter C to denote a constant depending
on λ, Λ, N , and M := ‖ϕ′‖∞. We use C(α, β, . . .) to denote a constant depending
on quantities α, β, . . . , as well as λ, Λ, N, M .

For x = (x1, x2) ∈ Ω, where Ω is as in (2.20), we shall denote x̄ := (x1, ϕ(x1)) ∈
∂Ω. Note that dx is comparable to |x − x̄|; more precisely, we have

(4.1) dx ≤ |x − x̄| ≤
√

1 + M2 dx ∀x ∈ Ω.

We shall use the following notation:

P−
r (t0, x0) := {(t, x) ∈ R × Ω : t0 − r2 < t < t0, |x − x0| < r},(4.2)

S−
r (t0, x0) := R × ∂Ω ∩ ∂P−

r (t0, x0).(4.3)

We ask the readers to consult [3] or [14] for the definition of the space V2.

Lemma 4.4. Assume that the operator L satisfies the conditions (2.2) and (2.3).
Let Ω be given as in (2.20) and let x̄0 ∈ ∂Ω. Assume that u(t, x) is a weak solution
in V2(P−

2R(t0, x̄0)) of ut − Lu = 0 and vanishes on S−
2R(t0, x̄0). Then, for any

y0 ∈ BR(x̄0) ∩ Ω, we have

(4.5)
∫

P−
ρ (t0,y0)

|Dxu|2 ≤ C
(ρ

r

)2+2µ
∫

P−
r (t0,y0)

|Dxu|2 ∀ρ < r ≤ R,

where µ = µ(λ, Λ, M) ∈ (0, 1). As a consequence, for all t ∈ (t0 − R2, t0), we have
(4.6)

|u(t, x)−u(t, x′)| ≤ C|x− x′|µR−(1+µ)

(∫
P−

2R(t0,x̄0)

|Dxu|2
)1/2

∀x, x′ ∈ BR(x̄0).

Proof. Let v(x) be a weak solution in W 1,2(Ω∩B2R(x̄0)) of Lv = 0 which vanishes
on ∂Ω ∩ B2R(x̄0). Let y0 ∈ BR(x̄0) ∩ Ω. By a well-known boundary regularity
theory for weak solutions of elliptic systems in two dimensional Lipschitz domains
(see, e.g., [18]), we have

(4.7)
∫

Bρ(y0)∩Ω

|Dv|2 ≤ C
(ρ

r

)2µ
∫

Br(y0)∩Ω

|Dv|2 ∀ρ < r ≤ R,

where µ = µ(λ, Λ, M) ∈ (0, 1). By a routine adjustment of an argument in [13],
one can deduce (4.5) and (4.6) from (4.7). �

Let Ω be given as in (2.20). It is rather tedious but routine to check that the
estimate (4.5) allows us to treat Ω as if Ω = R

2 in the proof of [3, Theorem 2.7].
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Consequently, we have the following estimates:

|K(t, x, y)| ≤ C{max(|t|1/2, |x − y|)}−2,

(4.8)

∫
Ω

|K(t, x, y)|2 dx ≤ Ct−1 ∀t > 0,

(4.9)

∫∫
(0,∞)×Ω\(0,r2)×Br(y)

|DxK(t, x, y)|2 dx dt ≤ Cr−2 ∀r > 0,

(4.10)

∫∫
(0,r2)×(Br(y)∩Ω)

|DxK(t, x, y)|p dx dt ≤ C(p)r−3p+4 ∀r > 0 ∀p ∈ [1, 4/3).

(4.11)

To show the convergence of the integral in (3.11), we need the following lemma.

Lemma 4.12. Let Ω be given as in (2.20). There exists µ = µ(λ, Λ, M) ∈ (0, 1)
such that

|K(t, x, y)| ≤ Cdµ
x{max(|t|1/2, |x − y|)}−2−µ ∀x, y ∈ Ω, x �= y.(4.13)

Proof. Denote r := max(|t|1/2, |x−y|). We may assume that dx < r/(10
√

1 + M2);
otherwise, (4.13) is an easy consequence of (4.8). Let u(t, x) be the k-th column of
K(t, x, y) and set R = r/4. Then by (4.1), (4.6), and (4.10), we have

|u(t, x)|= |u(t, x) − u(t, x̄)| ≤ C|x − x̄|µR−1−µ

(∫∫
(0,∞)×Ω\(0,R2)×BR(y)

|Dxu|2
)

1/2

≤ C|x − x̄|µR−2−µ ≤ Cdµ
xr−2−µ.

(4.14)

We obtain (4.13) from (4.14). The lemma is proved. �

Then, it follows from (4.13) that for all x, y ∈ Ω with x �= y, we have∫ ∞

0

|K(t, x, y)| dt =
∫ |x−y|2

0

+
∫ ∞

|x−y|2
|K(t, x, y)| dt ≤ Cdµ

x|x − y|−µ < ∞.(4.15)

Therefore, G(x, y), given the same as in (3.11), is well defined and satisfies

(4.16) |G(x, y)| ≤ Cdµ
x|x − y|−µ ∀x, y ∈ Ω, x �= y.

In fact, by using (4.8) and (4.13) together, we may obtain a better bound

|G(x, y)| ≤ C

(∫ |x−y|2

0

|x − y|−2 dt +
∫ d2

x

|x−y|2
t−1 dt +

∫ ∞

d2
x

dµ
xt−1−µ/2 dt

)

≤ C
(
1 + ln(dx/|x − y|)

)
if |x − y| < dx.(4.17)

Then by combining (4.16) and (4.17), we derive (recall ln+ t := max(ln t, 0))

(4.18) |G(x, y)| ≤ C min
{
1 + ln+(dx/|x − y|), dµ

x|x − y|−µ
}

∀x, y ∈ Ω, x �= y.
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Recall that (2.18) is a consequence of (3.21), which remains valid here. Therefore,
(2.22) follows from (2.18) and (4.18). Note that (2.22) implies that for any r > 0
and p ∈ [1,∞)

‖G(x, ·)‖Lp(Br(x)∩Ω) ≤ C(p, dx, r) < ∞; ‖G(·, y)‖Lp(Br(y)∩Ω) ≤ C(p, dy, r) < ∞.

(4.19)

In particular, we have shown that G(x, ·) is locally integrable for all x ∈ Ω. Next,
we show that G(·, y) is locally Hölder continuous in Ω\{y}. Fix x0 ∈ Ω with x0 �= y
and choose r > 0 such that r < dy and B2r(x0) ⊂ Ω \Br(y). Similarly as in (4.14),
Lemma 4.4 yields

(4.20) |K(t, x, y) − K(t, x0, y)| ≤ C|x − x0|µt−(1+µ/2) ∀x ∈ Br(x0) ∀t > t0,

where t0 := 8(r +
√

1 + M2dx0)
2. Notice that (3.17) still remains true here. There-

fore, by using (4.20) instead of (3.18) and proceeding as in (3.19), we obtain

(4.21) |G(x, y) − G(x0, y)| ≤ C|x − x0|µ ∀x ∈ Br(x0).

Then, it follows from (2.18) and (4.21) that G(x, y) is continuous in
{(x, y) ∈ Ω × Ω : x �= y}.

Now let us prove that u defined as in (2.16) is a unique weak solution in Y 1,2
0 (Ω)N

of Lu = −f . First observe that Ω is a Green domain. Let v(t, x) be defined the
same as in (3.40). Then as in (3.41), we have limt→∞ v(t, x) = u(x). Also, vt(t, x)
has the same representation as in (3.42). Then, by (4.9) and Minkowski’s inequality,
we have

(4.22) ‖vt(t, ·)‖L2(Ω) ≤ Ct−1/2‖f‖L1(Ω) ∀t > 0

and thus, by Lemma 3.44, we estimate

(4.23) ‖v(t, ·)‖L2(Ω) ≤ C‖f‖L1(Ω)

∫ t

0

s−1/2 ds ≤ Ct1/2‖f‖L1(Ω) ∀t > 0.

Assume that f is supported in a ball B ⊂ R
2. Then by setting φ = v(t, ·) in (3.46),

we get

λ‖Dv(t, ·)‖2
L2(Ω) ≤ ‖vt(t, ·)‖L2(Ω)‖v(t, ·)‖L2(Ω) + ‖f‖L2(Ω∩B)‖v(t, ·)‖L2(Ω∩B)

≤ C‖f‖2
L1(Ω∩B) + C(Ω, B) ‖f‖L2(Ω∩B)‖Dv(t, ·)‖L2(Ω),(4.24)

where we have used (4.22), (4.23), and (2.6). Then by applying Cauchy-Schwarz
inequality to (4.24), we find
(4.25)
‖Dv(t, ·)‖2

L2(Ω)≤C(Ω, B)
(
‖f‖2

L1(Ω∩B)+‖f‖2
L2(Ω∩B)

)
≤C(Ω, B)‖f‖2

L2(Ω) ∀t > 0.

Therefore, by the weak compactness and (3.41), we conclude that there exists an
increasing sequence {tm}∞m=1 tending to infinity such that Dv(tm, ·) ⇀ Du weakly
in L2(Ω)N so that (3.48) holds. Also, by (4.25) we find ‖Du‖L2(Ω) < ∞. By using
(2.6) and (4.25) it is not hard to verify that for any ζ ∈ C∞

c (R2),

‖ζv(t, ·)‖W 1,2(Ω) ≤ C(ζ, Ω, B)‖f‖L2(Ω) < ∞ ∀t > 0.

Therefore, we conclude that ζu ∈ W 1,2
0 (Ω)N for all ζ ∈ C∞

c (Ω), and thus u ∈
Y 1,2

0 (Ω)N . Consequently, it follows from (3.46), (3.48), (4.22), and Lemma 2.9 that
u is a unique weak solution in Y 1,2

0 (Ω)N of Lu = −f .
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By arguing the same as in the proof of Theorem 2.12, we get the uniqueness of
the Green’s matrix in Ω.

We need the following lemma to prove (2.14) and (2.15).

Lemma 4.26. Let Ω be given as in (2.20). Then, for all y ∈ Ω and for all t > 0,
we have

‖DK̃(t, ·, y)‖Lp(Bρ(y)∩Ω) ≤ C(p)ρ2/p−1 ∀ρ > 0 ∀p ∈ [1, 4/3),(4.27)

‖DK̃(t, ·, y)‖L2(Ω\Br(y)) ≤ C(1 + dµ
y r−µ) ∀r > 0.(4.28)

Proof. We proceed similarly as in the proof of Lemma 3.23. Let us begin by proving
(4.27) first. By Minkowski’s inequality, we have(∫

Bρ(y)∩Ω

|DxK̃(t, x, y)|pdx

)1/p

≤
∫ ρ2

0

+
∫ ∞

ρ2

(∫
Bρ(y)∩Ω

|DxK(s, x, y)|pdx

)1/p

ds := I1 + I2.

Then, by Hölder’s inequality and (4.11), we have

(4.29) I1 ≤
(∫ ρ2

0

∫
Bρ(y)∩Ω

|DxK(s, x, y)|p dx ds

)1/p

ρ2(1−1/p) ≤ C(p)ρ−1+2/p.

On the other hand, by using Hölder’s inequality
(4.30)

I2 ≤ C(p)ρ2/p
∞∑

j=1

(∫ (j+1)ρ2

jρ2

∫
Bρ(y)∩Ω

|DxK(s, x, y)|2 dx ds

)1/2

:=C(p)ρ2/p
∞∑

j=1

I2,j .

By setting r =
√

(j + 1)/2 ρ in (4.5) and using (4.10), we estimate

(I2,j)2 =
∫

P−
ρ (2r2,y)

|DxK(t, x, y)|2dx dt

≤ C
(ρ

r

)2+2µ
∫

P−
r (2r2,y)

|DxK(t, x, y)|2 dx dt

≤ C
(ρ

r

)2+2µ
∫

(0,∞)×Ω\(0,r2)×Br(y)

|DxK(t, x, y)|2 dx dt

≤ Cρ2+2µr−4−2µ = Cρ−2(j + 1)−2−µ.

(4.31)

Therefore, by combining (4.30) and (4.31), we find

(4.32) I2 ≤ C(p)ρ2/p−1
∞∑

j=1

(j + 1)−1−µ/2 = C(p)ρ2/p−1,

and thus (4.27) follows from (4.29) and (4.32).
Next, we turn to the proof of (4.28). As before, Minkowski’s inequality yields(∫

Ω\Br(y)

|DxK̃(t, x, y)|2dx

)1/2

≤
∫ r2

0

+
∫ ∞

r2

(∫
Ω\Br(y)

|DxK(s, x, y)|2dx

)1/2

ds

:= I3 + I4.
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Then, by Hölder’s inequality and (4.10), we have

(4.33) I3 ≤
(∫ r2

0

∫
Ω\Br(y)

|DxK(s, x, y)|2 dx ds

)1/2

r ≤ C.

We need the following inequality to estimate I4:

(4.34) I5(t) :=
∫ ∞

t

∫
Ω

|DxK(s, x, y)|2dx ds ≤ Cd2µ
y t−1−µ ∀r > 0 ∀t > 0.

Let us momentarily assume that (4.34) holds and proceed similarly as in (4.31) to
get

I4 ≤
(∫ ∞

r2

∫
Ω\Br(y)

|DxK(s, x, y)|2dx ds

)1/2

≤
∞∑

j=0

2j/2r

(∫ 2j+1r2

2jr2

∫
Ω

|DxK(s, x, y)|2dx ds

)1/2

≤ Cdµ
yr−µ

∞∑
j=0

2−jµ/2 ≤ Cdµ
yr−µ.

(4.35)

By combining (4.33) and (4.35), we obtain (4.28). It only remains to prove (4.34).
Note that by (4.13) and (3.21) we have

(4.36) |K(s, x, y)| ≤ Cdµ
y{max(s1/2, |x − y|)}−2−µ ∀x �= y ∀s > 0.

Let ζ ∈ C∞(R) be such that 0 ≤ ζ ≤ 1, ζ ≡ 1 on [t,∞), ζ ≡ 0 on (−∞, t/2], and
|ζ ′| ≤ 4/t. Then, by the energy inequality (see, e.g., [14, §III.2]) and (4.36), we
have

I5(t) ≤
∫ ∞

0

∫
Ω

ζ(s)|DxK(s, x, y)|2 dy ds ≤ C

∫ ∞

0

∫
Ω

|ζ ′(s)||K(s, x, y)|2 dy ds

≤ Ct−1d2µ
y

∫ t

t/2

(∫
|x−y|<√

s

s−2−µ dy +
∫
|x−y|≥√

s

|x − y|−4−2µ dy

)
ds

≤ Ct−1d2µ
y

∫ t

t/2

s−1−µ ds ≤ Cd2µ
y t−1−µ.

This completes the proof of the lemma. �

We now prove (2.14) and (2.15). To prove (2.14), first recall that (3.50) holds. By
(4.9), we find that (3.51) remains valid. Assume that φ ∈ C∞

c (Ω)N is supported in
BR(y)∩Ω. By (3.11) and (4.27), we find that there is a sequence {tm}∞m=1 tending
to infinity such that

DK̃(tm, ·, y) ⇀ DG(·, y) weakly in Lp(BR(y) ∩ Ω)N×N for some p > 1.

Therefore, we find

(4.37) lim
m→∞

∫
Ω

Aαβ
ij DβK̃jk(·, y)Dαφi =

∫
Ω

Aαβ
ij DβGjk(·, y)Dαφi.

By combining (3.50), (3.51), and (4.37), we obtain (2.14). To prove (2.15), first
observe that (4.28) yields

(4.38) ‖DG(·, y)‖L2(Ω\Br(y)) ≤ C(dy, r) < ∞ ∀r > 0.
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By using (4.19) and (4.38) and proceeding similarly as in (3.57), we obtain

‖D((1 − η)G(·, y))‖L2(Ω) ≤ C(η, dy) < ∞.

It follows from [3, Theorem 2.7] that for any ζ ∈ C∞
c (R2), we have

F (t, ·) := ζ(1 − η)K̃(t, ·, y) ∈ W 1,2
0 (Ω)N×N ∀t > 0.

Clearly, limt→∞ F (t, ·) = ζ(1− η)G(·, y). Moreover, by utilizing (3.22), (4.13), and
(4.28), it is not hard to verify ‖F (t, ·)‖W 1,2(Ω) ≤ C(ζ, η, dy) < ∞ for all t > 0. Then,
by a similar argument as in Section 3.2, we get ζ(1− η)G(·, y) ∈ W 1,2

0 (Ω)N×N . We
have proved (2.15).

Finally, notice that with (2.15) at hand, we may proceed similarly as in Sec-
tion 3.3 to conclude that that DG(·, y) and DG(x, ·) belong to Lp(Br(y) ∩Ω) and
Lp(Br(x) ∩ Ω), respectively, for all r > 0 and p ∈ [1, 2). We have already seen in
(4.19) that that G(·, y) and G(x, ·) belong to Lp(Br(y) ∩ Ω) and Lp(Br(x) ∩ Ω),
respectively, for all r > 0 and p ∈ [1,∞). This completes the proof of the theorem.

5. Remark on fundamental matrices

In this section, we introduce a result of Auscher et al. [1] regarding construction
of a fundamental matrix in R

2. Let H1(R2) be the usual Hardy space in R
2 and

C0(R2) be the space of continuous functions on R
2 vanishing at infinity. For x, y ∈

R
2, x �= y, define

(5.1) Γ(x, y) :=
∫ 1

0

K(t, x, y) dt +
∫ ∞

1

(K(t, x, y) − K(t, x, x)) dt.

The following theorem appears in [1] as Theorem 3.16, where L is assumed to be
an elliptic operator with complex coefficients. With appropriate changes, the same
proof carries over.

Theorem 5.2 (Auscher-McIntosh-Tchamitchian). Let the operator L satisfy (2.2)
and (2.3). Then for all x ∈ R

2, Γ(x, ·) ∈ BMO, and for f = (f1, . . . , fN )T ∈
H1(R2)N , the function defined by

Tf(x) :=
∫

R2
Γ(x, y)f(y) dy

belongs to C0(R2)N . The linear map thus defined is continuous from H1(R2)N into
C0(R2)N . Moreover, for all f ∈ H1(R2)N , u(x) := Tf(x) satisfies ‖Du‖L2(R2) <
∞ and is a weak solution of Lu = −f in the sense of (2.10).
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