Computability, noncomputability and undecidability of maximal intervals of IVPs
HTML articles powered by AMS MathViewer
- by D.S. Graça, N. Zhong and J. Buescu PDF
- Trans. Amer. Math. Soc. 361 (2009), 2913-2927 Request permission
Abstract:
Let $(\alpha ,\beta )\subseteq \mathbb {R}$ denote the maximal interval of existence of solutions for the initial-value problem \[ \left \{ \begin {array} [c]{l}\frac {dx}{dt}=f(t,x), x(t_{0})=x_{0}, \end {array} \right . \] where $E$ is an open subset of $\mathbb {R}^{m+1}$, $f$ is continuous in $E$ and $(t_{0},x_{0})\in E$. We show that, under the natural definition of computability from the point of view of applications, there exist initial-value problems with computable $f$ and $(t_{0},x_{0})$ whose maximal interval of existence $(\alpha ,\beta )$ is noncomputable. The fact that $f$ may be taken to be analytic shows that this is not a lack of the regularity phenomenon. Moreover, we get upper bounds for the “degree of noncomputability” by showing that $(\alpha ,\beta )$ is r.e. (recursively enumerable) open under very mild hypotheses. We also show that the problem of determining whether the maximal interval is bounded or unbounded is in general undecidable.References
- Oliver Aberth, Computable analysis and differential equations, Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968) North-Holland, Amsterdam, 1970, pp. 47–52. MR 0276087
- Oliver Aberth, The failure in computable analysis of a classical existence theorem for differential equations, Proc. Amer. Math. Soc. 30 (1971), 151–156. MR 302982, DOI 10.1090/S0002-9939-1971-0302982-7
- Errett Bishop and Douglas Bridges, Constructive analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 279, Springer-Verlag, Berlin, 1985. MR 804042, DOI 10.1007/978-3-642-61667-9
- Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale, Complexity and real computation, Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp. MR 1479636, DOI 10.1007/978-1-4612-0701-6
- Lenore Blum, Mike Shub, and Steve Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1, 1–46. MR 974426, DOI 10.1090/S0273-0979-1989-15750-9
- Mark Braverman and Stephen Cook, Computing over the reals: foundations for scientific computing, Notices Amer. Math. Soc. 53 (2006), no. 3, 318–329. MR 2208383
- M. Braverman and M. Yampolsky, Non-computable Julia sets, J. Amer. Math. Soc. 19 (2006), no. 3, 551–578. MR 2220099, DOI 10.1090/S0894-0347-05-00516-3
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- J. Denef and L. Lipshitz, Decision problems for differential equations, J. Symbolic Logic 54 (1989), no. 3, 941–950. MR 1011182, DOI 10.2307/2274755
- A. Grzegorczyk, Computable functionals, Fund. Math. 42 (1955), 168–202. MR 86756, DOI 10.4064/fm-42-1-168-202
- Jürgen Hauck, Ein Kriterium für die konstruktive Lösbarkeit der Differentialgleichung $y’=f(x,y)$, Z. Math. Logik Grundlag. Math. 31 (1985), no. 4, 357–362 (German). MR 807518, DOI 10.1002/malq.19850312106
- Ker-I Ko, Complexity theory of real functions, Progress in Theoretical Computer Science, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1137517, DOI 10.1007/978-1-4684-6802-1
- Daniel Lacombe, Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles. II, III, C. R. Acad. Sci. Paris 241 (1955), 13–14, 151–153 (French). MR 72080
- Solomon Lefschetz, Differential equations: Geometric theory, 2nd ed., Pure and Applied Mathematics, Vol. VI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0153903
- S. Mazur, Computable analysis, Rozprawy Mat. 33 (1963), 110. MR 153553
- Piergiorgio Odifreddi, Classical recursion theory, Studies in Logic and the Foundations of Mathematics, vol. 125, North-Holland Publishing Co., Amsterdam, 1989. The theory of functions and sets of natural numbers; With a foreword by G. E. Sacks. MR 982269
- Marian Boykan Pour-El and Ian Richards, A computable ordinary differential equation which possesses no computable solution, Ann. Math. Logic 17 (1979), no. 1-2, 61–90. MR 552416, DOI 10.1016/0003-4843(79)90021-4
- Marian Boykan Pour-El and Ian Richards, The wave equation with computable initial data such that its unique solution is not computable, Adv. in Math. 39 (1981), no. 3, 215–239. MR 614161, DOI 10.1016/0001-8708(81)90001-3
- Marian B. Pour-El and J. Ian Richards, Computability in analysis and physics, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1989. MR 1005942, DOI 10.1007/978-3-662-21717-7
- Marian B. Pour-El and Ning Zhong, The wave equation with computable initial data whose unique solution is nowhere computable, Math. Logic Quart. 43 (1997), no. 4, 499–509. MR 1477618, DOI 10.1002/malq.19970430406
- K. Ruohonen, An effective Cauchy-Peano existence theorem for unique solutions, Internat. J. Found. Comput. Sci. 7 (1996), no. 2, 151–160.
- M. Sipser, Introduction to the theory of computation, PWS Publishing Company, Boston, MA, 1997.
- A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. 2 (1936), no. 42, 230–265.
- Klaus Weihrauch, Computable analysis, Texts in Theoretical Computer Science. An EATCS Series, Springer-Verlag, Berlin, 2000. An introduction. MR 1795407, DOI 10.1007/978-3-642-56999-9
- Klaus Weihrauch and Ning Zhong, Is wave propagation computable or can wave computers beat the Turing machine?, Proc. London Math. Soc. (3) 85 (2002), no. 2, 312–332. MR 1912053, DOI 10.1112/S0024611502013643
Additional Information
- D.S. Graça
- Affiliation: DM/FCT, Universidade do Algarve, C. Gambelas, 8005-139 Faro, Portugal – and – SQIG, Instituto de Telecomunicações, Instituto Superior Técnico, Torre Norte, Piso 10, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Email: dgraca@ualg.pt
- N. Zhong
- Affiliation: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025
- Email: ning.zhong@uc.edu
- J. Buescu
- Affiliation: CAMGSD and Dep. Matemática, Faculdade de Ciências, Ed C6, Piso 2, Campo Grande, 1749-006 Lisboa, Portugal
- Email: jbuescu@ptmat.fc.ul.pt
- Received by editor(s): July 6, 2006
- Published electronically: January 22, 2009
- Additional Notes: The first author thanks M. Campagnolo, O. Bournez, and E. Hainry for helpful discussions. The first author was partially supported by Fundação para a Ciência e a Tecnologia and EU FEDER POCTI/POCI via CLC, grant SFRH/BD/17436/2004, and the project ConTComp POCTI/MAT/45978/2002. Additional support was also provided by the Fundação Calouste Gulbenkian through the Programa Gulbenkian de Estímulo à Investigação.
The second author was partially supported by University of Cincinnati’s Taft Summer Research Fellowship.
The third author was partially supported by Fundação para a Ciência e a Tecnologia and EU FEDER POCTI/POCI via CAMGSD - © Copyright 2009 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 361 (2009), 2913-2927
- MSC (2000): Primary 65L05, 68Q17; Secondary 03D35
- DOI: https://doi.org/10.1090/S0002-9947-09-04929-0
- MathSciNet review: 2485412