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UNIVERSAL DEFORMATION RINGS
AND DIHEDRAL DEFECT GROUPS

FRAUKE M. BLEHER

Abstract. Let k be an algebraically closed field of characteristic 2, and let W
be the ring of infinite Witt vectors over k. Suppose G is a finite group and B is
a block of kG with dihedral defect group D, which is Morita equivalent to the
principal 2-modular block of a finite simple group. We determine the universal
deformation ring R(G, V ) for every kG-module V which belongs to B and has
stable endomorphism ring k. It follows that R(G, V ) is always isomorphic to
a subquotient ring of WD. Moreover, we obtain an infinite series of examples
of universal deformation rings which are not complete intersections.

1. Introduction

In this paper we determine the universal deformation rings R(G, V ) associated
to certain mod 2 representations V of finite groups G which belong to blocks of G
having dihedral defect group D. There are three reasons for making this calculation.
The first is that it provides more evidence for an affirmative answer to a question
posed in [6], which would bound R(G, V ) in terms of the group ring of D over
the Witt vectors (see Question 1.1). The second reason is that we produce an
infinite family of R(G, V ) which are not complete intersections, but which do satisfy
the dimension versus depth condition conjectured in [8] (see Question 1.3). This
in turn leads to interesting questions in number theory (see the discussion after
Question 1.3). The final reason is to describe a general method for applying results
in modular and ordinary representation theory due to Brauer, Erdmann and others
to the computation of universal deformation rings.

To make this more precise, let k be an algebraically closed field of characteristic
p > 0, let W = W (k) be the ring of infinite Witt vectors over k, and let F be the
fraction field of W . Let Γ be a profinite group, and suppose V is a finite dimen-
sional vector space over k with a continuous Γ-action. If all continuous kΓ-module
endomorphisms of V are given by scalar multiplications, an argument of Faltings
(see [18]) shows that V has a universal deformation ring R(Γ, V ). The topological
ring R(Γ, V ) is universal with respect to deformations of V over commutative local
W -algebras with residue field k which are the projective limits of their discrete
Artinian quotients. For more information on deformation rings see [18], [27] and
§2. In number theory, deformation rings are at the center of work by many authors

Received by the editors July 26, 2006 and, in revised form, April 27, 2007.
2000 Mathematics Subject Classification. Primary 20C20; Secondary 20C15, 16G10.
Key words and phrases. Universal deformation rings, dihedral defect groups, special biserial

algebras, stable endomorphism rings.
The author was supported in part by NSF Grant DMS01-39737 and NSA Grant H98230-06-1-

0021.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

3661



3662 FRAUKE M. BLEHER

concerning Galois representations, modular forms, elliptic curves and diophantine
geometry (see e.g. [16], [34, 32], [10] and their references).

In [18], de Smit and Lenstra show that R(Γ, V ) is the inverse limit of the uni-
versal deformation rings R(G, V ) when G runs over all finite discrete quotients of
Γ through which the Γ-action on V factors. Thus to answer questions about the
ring structure of R(Γ, V ), it is natural to first consider the case when Γ = G is
finite. In this case, V has a universal deformation ring R(G, V ) under the weaker
condition that the stable endomorphism ring EndkG(V ) is of dimension 1 over k
(see [6, Prop. 2.1]); we assume EndkG(V ) = k in what follows.

In [6], the author and T. Chinburg determined R(G, V ) for V belonging to blocks
with cyclic defect groups, i.e. blocks of finite representation type. In [4], the author
considered V belonging to blocks with Klein four defect groups and described their
universal deformation rings. This is a natural progression from [6], since the blocks
with Klein four defect groups have tame representation type and are the only such
blocks having abelian (non-cyclic) defect groups. The results obtained in [6] led to
the following question.

Question 1.1. Let B be a block of kG with defect group D, and suppose V is
a finitely generated kG-module with stable endomorphism ring k such that the
unique (up to isomorphism) non-projective indecomposable summand of V belongs
to B. Is the universal deformation ring R(G, V ) of V isomorphic to a subquotient
ring of the group ring WD?

It is shown in [6] and [4] that the answer to this question is positive in case D is
cyclic or a Klein four group. Moreover, it follows that in all these cases R(G, V ) is a
complete intersection ring (see [8, Thm. 7.2]). In case k has characteristic 2, G is the
symmetric group S4 and E is the unique (up to isomorphism) non-trivial simple kS4-
module, the author and T. Chinburg showed in [7, 8] that R(S4, E) ∼= W [t]/(t2, 2t).
Hence R(S4, E) is not a complete intersection ring, which answers a question of
M. Flach [14]. Note that E belongs to the principal block of kS4 which has as
defect groups dihedral groups of order 8. A new proof of this result has been
given by Byszewski in [13] using only elementary obstruction calculus. In [7, 8],
the author and T. Chinburg also considered the question of whether deformation
rings which are not complete intersections arise from arithmetic. It was shown in
particular that there are infinitely many real quadratic fields L such that the Galois
group GL,∅ of the maximal totally unramified extension of L surjects onto S4 and
R(GL,∅, E) ∼= R(S4, E) ∼= W [t]/(t2, 2t) is not a complete intersection, where E is
viewed as a module of GL,∅ via inflation.

In this paper, we expand these results further by considering entire families of
blocks of tame representation type with defect d ≥ 3. More precisely, our goal is
to determine the structure of the universal deformation rings R(G, V ) in case D is
dihedral of order at least 8 and B is Morita equivalent to the principal 2-modular
block of a finite simple group. In particular, B contains precisely three isomorphism
classes of simple modules. Note that in [9], Brauer has proved that a block with
dihedral defect groups contains at most three simple modules up to isomorphism;
hence we look at the largest case. It follows by the classifications by Gorenstein-
Walter [22] and by Erdmann [20] that except for possibly one remaining family, all
blocks B with dihedral defect groups containing precisely three isomorphism classes
of simple modules are Morita equivalent to the principal 2-modular block of some
finite simple group (see Remark 3.1).
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A summary of our main results is as follows. The precise statements can be found
in Propositions 4.1.1, 4.2.1 and 4.2.4 and in Theorem 5.1 and Corollary 5.1.2.

Theorem 1.2. Suppose k has characteristic 2. Let B be a block of kG with dihedral
defect group D of order 2d where d ≥ 3, which is Morita equivalent to the principal
2-modular block of a finite simple group. Let V be a finitely generated B-module
with stable endomorphism ring k and universal deformation ring R(G, V ). Then
either

(i) R(G, V )/2R(G, V ) ∼= k, in which case R(G, V ) is isomorphic to a quotient
ring of W , or

(ii) R(G, V )/2R(G, V ) ∼= k[t]/(t2
d−2

), in which case R(G, V ) ∼= W [[t]]/
(pd(t)(t − 2), 2 pd(t)) for a certain monic polynomial pd(t) ∈ W [t] of de-
gree 2d−2 − 1 whose non-leading coefficients are all divisible by 2.

In all cases, R(G, V ) is isomorphic to a subquotient ring of WD. Given the block
B, each of the cases (i) and (ii) occurs for infinitely many V . In case (ii), R(G, V )
is not a complete intersection.

This theorem also gives an affirmative answer to the following question from [8]
for B, D and V as in the statement of the theorem (see [8, Thm. 7.2]).

Question 1.3. Suppose B, D and V are as in Question 1.1 and D has nilpotency
r. Is it the case that dim(R(G, V )) − depth(R(G, V )) ≤ r − 1?

Theorem 1.2 provides an infinite series of finite groups G and mod 2 represen-
tations V for which R(G, V ) is not a complete intersection (see Corollary 5.1.2).
This raises the question of whether one can use such G and V to construct further
examples of deformation rings arising from arithmetic which are not complete in-
tersections, in the following sense. As in [8], one can ask whether there are number
fields L together with a finite set of places S of L such that G is a quotient of the
Galois group GL,S of the maximal unramified outside S extension LS of L which
has the following property. There should be a surjection ψ : GL,S → G which
induces an isomorphism R(GL,S , V ) → R(G, V ) of deformation rings when V is
viewed as a representation for GL,S via ψ. It was shown in [8] that a sufficient
condition for R(GL,S , V ) → R(G, V ) to be an isomorphism is that Ker(ψ) has no
non-trivial pro-2 quotient. This is equivalent to the requirement that if L′ is the
fixed field of Ker(ψ) acting on LS , then each ray class group of L′ associated to a
conductor involving only places over S should have odd order.

As mentioned earlier, the above arithmetic problem was considered in [8] when
G = S4 and V is irreducible of dimension 2. It is more challenging to treat the cases
produced by Theorem 1.2 in an analogous way, but we think this raises interesting
questions in Galois theory. For example, if G = A7 and V is an irreducible mod 2
representation of degree 14, can one find L and S and ψ : GL,S → G as above for
which Ker(ψ) has no non-trivial pro-2 quotient, and hence R(GL,S , V ) ∼= R(G, V )
is not a complete intersection? Is this possible when L = Q? Another interesting
case provided by Theorem 1.2 is when G is isomorphic to PSL2(Fq), where q is an
odd prime power and 8 divides #G. For example, if q = �2 where � �≡ ±1 mod 24
(resp. � �≡ 1, 4, 16 mod 21), it was proved in [31] (resp. in [19]) that PSL2(Fq)
occurs regularly over Q(t), implying that there are PSL2(Fq) extensions of any
number field L for such q. On the other hand, it was shown in [33] that for any
prime � there are infinitely many positive integers r such that for q = �r, PSL2(Fq)
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occurs as a Galois group over Q. We are looking for PSL2(Fq) extensions of number
fields which satisfy additional constraints on their ray class groups. Generalizing
the techniques of [8] to treat such questions is beyond the scope of this paper, but
we believe this will lead to interesting new number theoretic results.

We now describe the steps used to prove Theorem 1.2.
We first determine which indecomposable B-modules have stable endomorphism

ring k, using the fact that B is Morita equivalent to a special biserial algebra. This
enables us to use the description of indecomposable modules of special biserial alge-
bras as so-called string and band modules. We go through each component C of the
stable Auslander-Reiten quiver of B starting with modules in C of minimal length.
As it turns out, for each block B there are infinitely many isomorphism classes
of indecomposable B-modules with stable endomorphism ring k. More precisely,
there are always two components C of type ZA∞

∞ which consist entirely of modules
with stable endomorphism ring k. The other modules with stable endomorphism
ring k either lie at the ends of 3-tubes or they form a single Ω-orbit in one or two
components C′ of type ZA∞

∞.
After we have found all indecomposable B-modules V with stable endomor-

phism ring k, we then determine their universal deformation rings modulo 2, i.e.
R(G, V )/2R(G, V ). To do so, we concentrate first on one block B of a given defect
d ≥ 3. We then make use of the fact that all the blocks B of defect d are stably
equivalent by a stable equivalence of Morita type over k. This leads to the universal
deformation rings R(G, V ) in case (i) of Theorem 1.2.

For V as in case (ii), our strategy is to use Brauer’s results on the ordinary
characters belonging to B to find the largest quotient of R(G, V ) which is flat over
W , namely W [[t]]/(pd(t)) for pd(t) as in part (ii) of Theorem 1.2. We then use ring
theory to show R(G, V ) must have the form W [[t]]/(pd(t) (t − 2γ), α 2m pd(t)) for
some γ ∈ W , α ∈ {0, 1} and m ≥ 1. To determine γ, α and m, we take advantage
of the fact that if U is the universal mod 2 deformation of V , then EndkG(U) = k,
so that R(G, U) is well defined. To compute R(G, U), we use the fact that U lies at
the end of a 3-tube of the stable Auslander-Reiten quiver of B. Using results from
Brauer and Erdmann we see that the vertices of U are Klein four groups. Moreover,
suppose K is one such Klein four group, and let NG(K) be the normalizer of K
in G. Then the Green correspondent fU is a kNG(K)-module which is induced
from a module belonging to the end of a 3-tube of the stable Auslander-Reiten
quiver of a block b1 which is Morita equivalent to kA4. The results of [4] imply
that R(G, U) = k, which leads to α = 1 and m = 1.

The paper is organized as follows. In §2, we recall the definitions of deformations
and deformation rings and prove that stable equivalences of Morita type preserve
deformation rings (see Lemmas 2.2.2 and 2.2.3). We also prove some results which
help determine universal deformation rings that are certain quotient rings of W [[t]]
(see Lemmas 2.3.1, 2.3.2, 2.3.3 and 2.3.6). In §3, we use the classifications by
Gorenstein-Walter [22] and by Erdmann [20] to describe all 2-modular blocks B of
a finite group G which have dihedral defect groups and are Morita equivalent to
the principal 2-modular block of a finite simple group. We also describe results by
Brauer [9] about the ordinary irreducible characters of G belonging to B. In §4 and
§6, we determine which indecomposable B-modules V have stable endomorphism
ring k and find their universal deformation rings modulo 2 (see Propositions 4.1.1,
4.2.1 and 4.2.4). In §5, we analyze the B-modules belonging to the boundaries
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of 3-tubes and use the results from [9] about the ordinary irreducible characters
belonging to B to determine the universal deformation rings of V (see Theorem
5.1). In particular, this implies Theorem 1.2. Since we make use of the fact that
all the blocks we consider in this paper are Morita equivalent to special biserial
algebras, we recall in §7 the basic definitions of special biserial algebras and string
algebras and describe their indecomposable modules and their Auslander-Reiten
quivers.

2. Preliminaries: Universal deformation rings

In this section, we give a brief introduction to versal and universal deformation
rings and deformations. For more background material, we refer the reader to [27]
and [18].

Let k be an algebraically closed field of characteristic p > 0, and let W be
the ring of infinite Witt vectors over k. Let Ĉ be the category of all complete
local commutative Noetherian rings with residue field k. The morphisms in Ĉ are
continuous W -algebra homomorphisms which induce the identity map on k. Let C
be the full subcategory of Ĉ of Artinian objects.

2.1. Universal and versal deformation rings. Suppose G is a finite group and
V is a finitely generated kG-module. A lift of V over an object R in Ĉ is a pair
(M, φ) where M is a finitely generated RG-module which is free over R, and φ :
k⊗R M → V is an isomorphism of kG-modules. Two lifts (M, φ) and (M ′, φ′) of V
over R are isomorphic if there is an isomorphism α : M → M ′ with φ = φ′ ◦(k⊗α).
The isomorphism class [M, φ] of a lift (M, φ) of V over R is called a deformation
of V over R, and the set of such deformations is denoted by DefG(V, R). The
deformation functor

F̂V : Ĉ → Sets

sends an object R in Ĉ to DefG(V, R) and a morphism f : R → R′ in Ĉ to the map
DefG(V, R) → DefG(V, R′) defined by [M, φ] 
→ [R′ ⊗R,f M, φ′], where φ′ = φ after
identifying k ⊗R′ (R′ ⊗R,f M) with k ⊗R M .

In case there exists an object R(G, V ) in Ĉ and a deformation [U(G, V ), φU ] of V

over R(G, V ) such that for each R in Ĉ and for each lift (M, φ) of V over R there is a
unique morphism α : R(G, V ) → R in Ĉ such that F̂V (α)([U(G, V ), φU ]) = [M, φ],
then R(G, V ) is called the universal deformation ring of V and [U(G, V ), φU ] is
called the universal deformation of V . In other words, R(G, V ) represents the
functor F̂V in the sense that F̂V is naturally isomorphic to HomĈ(R(G, V ),−). In
case the morphism α : R(G, V ) → R relative to the lift (M, φ) of V over R is not
unique, R(G, V ) is called the versal deformation ring of V and [U(G, V ), φU ] is
called the versal deformation of V .

By [27], every finitely generated kG-module V has a versal deformation ring. By
a result of Faltings (see [18, Prop. 7.1]), V has a universal deformation ring in case
EndkG(V ) = k.

The following two results were proved in [6], where Ω denotes the Heller operator
for kG (see for example [1, §20]).

Proposition 2.1.1 ([6, Prop. 2.1]). Suppose V is a finitely generated kG-module
with stable endomorphism ring EndkG(V ) = k. Then V has a universal deformation
ring R(G, V ).
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Lemma 2.1.2 ([6, Cors. 2.5 and 2.8]). Let V be a finitely generated kG-module
with stable endomorphism ring EndkG(V ) = k.

(i) Then EndkG(Ω(V )) = k, and R(G, V ) and R(G, Ω(V )) are isomorphic.
(ii) There is a non-projective indecomposable kG-module V0 (unique up to iso-

morphism) such that EndkG(V0) = k, V is isomorphic to V0 ⊕ P for some
projective kG-module P , and R(G, V ) and R(G, V0) are isomorphic.

The following result can be proved similarly to [6, Prop. 5.2], using [6, Lemmas
5.3 and 5.4].

Proposition 2.1.3. Let L be a subgroup of G and let U be a finitely generated
indecomposable kL-module with EndkL(U) = k. Suppose there exists an indecom-
posable kG-module V with EndkG(V ) = k and a projective kG-module P such that

(2.1.1) IndG
LU = V ⊕ P.

Assume further that

(2.1.2) dimkExt1kL(U, U) = dimkExt1kG(V, V ).

Then R(G, V ) is isomorphic to R(L, U).

2.2. Stable equivalences of Morita type. Suppose G (resp. H) is a finite group,
and let A (resp. B) be a block of WG (resp. WH). For R ∈ Ob(Ĉ), define RA
(resp. RB) to be the block algebra in RG (resp. RH) corresponding to A (resp.
B), i.e. RA = R ⊗W A (resp. RB = R ⊗W B). Let Γ be A or B. Then Γ is a W -
algebra that is projective as a W -module. Moreover, Γ is a symmetric W -algebra
in the sense that Γ is isomorphic to its W -linear dual Γ̌ = HomW (Γ, W ), as Γ-Γ-
bimodules. In the following, Γ-mod denotes the category of finitely generated left
Γ-modules, and Γ-mod denotes the W -stable category, i.e. the quotient category
of Γ-mod by the subcategory of relatively W -projective modules. Recall that a
Γ-module is called relatively W -projective if it is isomorphic to a direct summand
of Γ ⊗W M for some W -module M .

In [5], it was shown that a split-endomorphism two-sided tilting complex (as
introduced by Rickard [29]) for the derived categories of bounded complexes of
finitely generated modules over A, resp. B, preserves the versal deformation rings
of bounded complexes of finitely generated modules over kA, resp. kB. It follows
from a result by Rickard (see [28] and [24, Prop. 6.3.8]) that a derived equivalence
between the derived categories of bounded complexes Db(A-mod) and Db(B-mod)
induces a stable equivalence between A-mod and B-mod which is itself induced by
a bimodule. More precisely we get the following definition of stable equivalence of
Morita type going back to Broué [11].

Definition 2.2.1. Let M be a B-A-bimodule and N an A-B-bimodule. We say
M and N induce a stable equivalence of Morita type between A and B if M and
N are projective both as left and as right modules and if

N ⊗B M ∼= A ⊕ P as A-A-bimodules, and(2.2.1)
M ⊗A N ∼= B ⊕ Q as B-B-bimodules,

where P is a projective A-A-bimodule and Q is a projective B-B-bimodule. In
particular, M ⊗A − and N ⊗B − induce mutually inverse equivalences between the
W -stable module categories A-mod and B-mod.
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We now prove that stable equivalences of Morita type preserve versal deformation
rings.

Lemma 2.2.2. Let A and B be blocks of group rings over W as above. Suppose that
M is a B-A-bimodule and N is an A-B-bimodule which induce a stable equivalence
of Morita type between A and B. Let V be a finitely generated kA-module, and
define V ′ = (k ⊗W M) ⊗kA V . Then R(G, V ) is isomorphic to R(H, V ′) in Ĉ.

Proof. Suppose R ∈ Ob(C) is Artinian. Then MR = R⊗W M is projective as a left
RB-module and as a right RA-module, and NR = R ⊗W N is projective as a left
RA-module and as a right RB-module. Since MR ⊗RA (NR) ∼= R ⊗W (M ⊗A N),
we have, using (2.2.1),

MR ⊗RA NR
∼= RB ⊕ PR as RA-RA-bimodules,

where PR = R ⊗W P is a projective RA-RA-bimodule. Similarly, we get

NR ⊗RB MR
∼= RA ⊕ QR as RB-RB-bimodules,

where QR = R ⊗W Q is a projective RB-RB-bimodule.
Let X = Qk ⊗kA V and Y = Pk ⊗kB V ′. Then since Qk is a projective kA-kA-

bimodule, it follows that X is a projective kA-module. Similarly, Y is a projective
kB-module. Let XR be the projective RA-cover of X and YR the projective RB-
cover of Y , which exist since we assume R to be Artinian. Then XR defines a
lift (XR, πX) of X over R and YR defines a lift (YR, πY ) over R. Because R is
commutative local, every lift of X (resp. Y ) over R is isomorphic to (XR, πX)
(resp. (YR, πY )).

Now let (U, φ) be a lift of V over R. Then U is a finitely generated RA-module.
Define U ′ = MR⊗RAU . Since M is a finitely generated projective right RA-module
and since U is a finitely generated free R-module, it follows that U ′ is a finitely
generated projective, and hence free, R-module. Moreover

(2.2.2) U ′ ⊗R k = (MR ⊗RA U)⊗R k = Mk ⊗kA (U ⊗R k) Mk⊗φ−−−−→ Mk ⊗kA V = V ′.

This means that (U ′, φ′) = (MR ⊗RA U, Mk ⊗φ) is a lift of V ′ over R. We therefore
obtain for all R ∈ Ob(C) a well-defined map

τR : DefG(V, R) → DefH(V ′, R).

We need to show that τR is bijective. Let U ′′ = NR ⊗RB U ′ and φ′′ = Nk ⊗ φ′.
Similarly to (2.2.2), it follows that (U ′′, φ′′) = (NR ⊗RB U ′, Nk ⊗ φ′) is a lift of
V ′′ = Nk ⊗kB V ′ over R. We have

(U ′′, φ′′) = (NR ⊗RB (MR ⊗RA U), Nk ⊗ (Mk ⊗ φ))(2.2.3)
∼= ((RA ⊕ QR) ⊗RA U, (kA ⊕ Qk) ⊗ φ)
∼= (U ⊕ (QR ⊗RA U), φ ⊕ (Qk ⊗ φ))
∼= (U ⊕ XR, φ ⊕ πX)

as lifts of V ′′ over R, where the last isomorphism follows, since (QR ⊗RA U, Qk ⊗φ)
is a lift of X = Qk ⊗kA V over R. Moreover,

V ′′ = Nk ⊗kB (Mk ⊗kA V ) ∼= (kA ⊕ Qk) ⊗kA V ∼= V ⊕ (Qk ⊗kA V ) = V ⊕ X.

Hence it follows by [6, Prop. 2.6] that τR is injective.
Now let (L, ψ) be a lift of V ′ = Mk ⊗kA V over R. Then (L′, ψ′) = (NR ⊗RB

L, Nk⊗ψ) is a lift of V ′′ = Nk⊗kBV ′ ∼= V ⊕X over R. By [6, Prop. 2.6], there exists
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a lift (U, φ) of V over R such that (L′, ψ′) ∼= (U ⊕ XR, φ ⊕ πX). Arguing similarly
as in (2.2.3), we have that (L′, ψ′) is isomorphic to (U ′′, φ′′) = (NR ⊗RB U ′, Nk ⊗
φ′) where (U ′, φ′) = (MR ⊗RA U, Mk ⊗ φ). Therefore, (MR ⊗RA L′, Mk ⊗ ψ′) ∼=
(MR ⊗RA U ′′, Mk ⊗ φ′′). Arguing again similarly as in (2.2.3), we have

(MR ⊗RA L′, Mk ⊗ ψ′) ∼= (L ⊕ YR, ψ ⊕ πY ) and
(MR ⊗RA U ′′, Mk ⊗ φ′′) ∼= (U ′ ⊕ YR, φ′ ⊕ πY ).

Thus by [6, Prop. 2.6], it follows that (L, ψ) ∼= (U ′, φ′), i.e. τR is surjective. Since
the deformation functors F̂V and F̂V ′ are continuous, this implies that they are
naturally isomorphic. Hence the versal deformation rings R(G, V ) and R(H, V ′)
are isomorphic in Ĉ. �

Using the same types of arguments as in the proof of Lemma 2.2.2, but restricting
our attention to Artinian objects R in C that are k-algebras, we get the following
weaker result about versal deformation rings modulo p.

Lemma 2.2.3. Let A and B be blocks of group rings over W as above. Suppose that
Mk is a kB-kA-bimodule and Nk is a kA-kB-bimodule which induce a stable equiv-
alence of Morita type between kA and kB. Let V be a finitely generated kA-module,
and define V ′ = Mk ⊗kA V . Then R(G, V )/pR(G, V ) ∼= R(H, V ′)/pR(H, V ′).

Remark 2.2.4. Using the notation of Lemma 2.2.2 (resp. of Lemma 2.2.3), sup-
pose that the stable endomorphism ring EndkG(V ) = k. Then it follows that also
EndkH(V ′) = k. By Lemma 2.1.2(ii), there exists a non-projective indecomposable
kH-module V ′

0 (unique up to isomorphism) which is a direct summand of V ′ with
EndkH(V ′

0) = k and R(H, V ′) ∼= R(H, V ′
0). In the situation of Lemma 2.2.2, it then

follows that R(G, V ) ∼= R(H, V ′
0). In the situation of Lemma 2.2.3, we have at least

R(G, V )/pR(G, V ) ∼= R(H, V ′
0)/pR(H, V ′

0).

Remark 2.2.5. Let Λ be a finite dimensional k-algebra, and denote by modP(Λ)
the full subcategory of Λ-mod whose objects are the modules which have no non-
zero projective summands. Suppose Λ′ is another finite dimensional k-algebra and
F : Λ-mod → Λ′-mod is a stable equivalence. Let

0 → A
(f

s)−−→ B
∐

P
(g,t)−−−→ C → 0

be an almost split sequence in Λ-mod, where A, B, C are in modP(Λ), B is non-zero
and P is projective. Then, by [2, Prop. X.1.6], for any morphism g′ : F (B) → F (C)
with F (g) = g′ there is an almost split sequence

0 → F (A)
(f ′

u )
−−−→ F (B)

∐
P ′ (g′,v)−−−→ F (C) → 0

in Λ′-mod where P ′ is projective and F (f) = f ′.
Moreover, by [2, Cor. X.1.9 and Prop. X.1.12], if Λ and Λ′ are selfinjective with

no blocks of Loewy length 2, then the stable Auslander-Reiten quivers of Λ and Λ′

are isomorphic stable translation quivers, and F commutes with Ω.

2.3. Universal deformation rings that are quotient rings of W [[t]]. In this
subsection, we provide a few results that help determine universal deformation rings
that are certain quotient rings of W [[t]]. As before, let G be a finite group. The
first result deals with universal deformation rings modulo p.
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Lemma 2.3.1. Let Y be a finitely generated uniserial kG-module belonging to a
special biserial block (see §7) and satisfying EndkG(Y ) = k and Ext1kG(Y, Y ) =
k. Suppose Y has a descending radical series (T1, T2, . . . , T�) where � ≥ 1 and
T1, . . . , T� are simple kG-modules, not necessarily distinct. Assume there exists

an integer s ≥ 1 such that the projective cover PT1 has the form PT1 =
T1

U1 U2

T1

,

where U1 and U2 are uniserial kG-modules, U1 may be zero, and U2 has a descending
radical series

(T2, . . . , T�, T1, T2, . . . , T�, . . . , T1, T2, . . . , T�)

of length �ps − 1. Define U to be the uniserial kG-module U =
T1

U2
and suppose

Ext1kG(U, Y ) = 0. Then the universal deformation ring of Y modulo p is R =
R(G, Y )/pR(G, Y ) ∼= k[t]/(tp

s

), and the universal mod p deformation of Y over R
is represented by the kG-module U .

Proof. By assumption, Ext1kG(Y, Y ) = k, which implies that R ∼= k[t]/(tr) for some
r ≥ 1. The module U is a uniserial kG-module of length �ps with descending radical
series

(T1, . . . , T�, T1, . . . , T�, . . . , T1, . . . , T�) = (T1, . . . , T�)ps

.

If we let t act as the shift down by �, it follows that U is a free k[t]/(tp
s

)-module
which is a lift of Y over k[t]/(tp

s

). Hence there is a k-algebra homomorphism

φ : R → k[t]/(tp
s

)

corresponding to U . Since U is indecomposable as a kG-module, it follows that φ is
surjective. We now show that φ is a k-algebra isomorphism. Suppose this is false.
Then there exists a surjective k-algebra homomorphism φ1 : R → k[t]/(tp

s+1) such
that πφ1 = φ, where π : k[t]/(tp

s+1) → k[t]/(tp
s

) is the natural projection. Let U1

be a lift of Y over k[t]/(tp
s+1) relative to φ1. Then U1 is a lift of U over k[t]/(tp

s+1)
with tp

s

U1
∼= Y . Thus we have a short exact sequence of k[t]/(tp

s+1) G-modules

(2.3.1) 0 → tp
s

U1 → U1 → U → 0.

We now show that this sequence cannot split as a sequence of kG-modules. Suppose

it splits. Then U1
∼= Y ⊕ U as kG-modules. Let z =

(
y
u

)
∈ Y ⊕ U ∼= U1. Then

t acts on z as multiplication by the matrix

At =
(

0 α
0 µt

)
,

where α : U → Y is a surjective kG-module homomorphism and µt is multiplication

by t on U . Since tp
s

U1
∼= Y , there exists a non-zero z =

(
y
u

)
∈ Y ⊕ U ∼= U1

with (At)ps

z �= 0. But, since EndkG(Y ) = k, α corresponds to the isomorphism
U/tU ∼= Y which means that the kernel of α is tU . Thus

(At)ps

(
y
u

)
=

(
α(µps−1

t (u))
µps

t (u)

)
=

(
0
0

)
,

which gives a contradiction. Hence the short exact sequence (2.3.1) does not split as
a sequence of kG-modules. Since Ext1kG(U, Y ) = 0 by assumption and tp

s

U1
∼= Y ,
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this is impossible. Therefore, U1 does not exist, which means that φ is a k-algebra
isomorphism. Thus R ∼= k[t]/(tp

s

), and the universal mod p deformation of Y over
R is represented by the kG-module U . �

The next result analyzes when a finitely generated kG-module can be lifted to a
WG-module which is free as a W -module. In the following, F denotes the fraction
field of W .

Lemma 2.3.2. Let V be a finitely generated kG-module such that there is a non-
split short exact sequence of kG-modules

(2.3.2) 0 → Y2 → V → Y1 → 0

with Ext1kG(Y1, Y2) = k. Assume that for i ∈ {1, 2}, there exists a WG-module Xi

which is a lift of Yi over W ; in particular Xi is free as a W -module. Suppose that

(2.3.3) dimF HomFG(F ⊗W X1, F ⊗W X2) = dimk HomkG(Y1, Y2) − 1.

Then there exists a WG-module X which is a lift of V over W ; in particular, X is
free as a W -module.

Proof. Since X1 and X2 are free as W -modules, we see, using spectral sequences,
that

Hi(G, HomW (X1, X2)) = Exti
WG(X1, X2) and

Hi(G, Homk(Y1, Y2)) = Exti
kG(Y1, Y2)

for all i ≥ 0. From the short exact sequence

0 → HomW (X1, X2)
·p−→ HomW (X1, X2)

mod p−−−−→ Homk(Y1, Y2) → 0

we obtain a long exact cohomology sequence

0 �� HomW G(X1,X2)
µ0
∗ �� HomWG(X1,X2)

π0
∗ �� HomkG(Y1,Y2) ����

��
δ0

��
Ext1W G(X1,X2)

µ1
∗ �� Ext1W G(X1,X2)

π1
∗ �� Ext1kG(Y1,Y2) �� ···

where for i ∈ {0, 1}, µi
∗ stands for multiplication by p and πi

∗ stands for reduction
modulo p. To prove that there is a lift of V over W , it is enough to prove that π1

∗
is surjective.

Let n = dimF HomFG(F⊗W X1, F⊗W X2). Since X1 and X2 are free W -modules
of finite rank, it follows that

F ⊗W HomWG(X1, X2) ∼= HomFG(F ⊗W X1, F ⊗W X2)

as F -modules. Thus HomWG(X1, X2) is a free W -module of rank n. Hence
Im(π0

∗) = kn and thus Ker(δ0) = kn, as W -modules. On the other hand, by (2.3.3),
HomkG(Y1, Y2) = kn+1. Thus Im(δ0) = k, which implies Ker(µ1

∗) = k. Hence
Ext1WG(X1, X2) is a non-zero finitely generated W -module, and so the image of π1

∗,
which is isomorphic to the cokernel of µ1

∗, is non-trivial. Since Ext1kG(Y1, Y2) = k,
it follows that π1

∗ is surjective. �
For the remainder of this section, we consider the case p = 2 and prove some

results which help determine the universal deformation ring R provided R/2R ∼=
k[t]/(t2

n

) for some positive integer n. The first result is a generalization of [7,
Lemma 2.2].
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Lemma 2.3.3. Suppose k has characteristic p = 2. Let d ≥ 3 be an integer, and
let f(t) be a monic polynomial in W [t] of degree 2d−2 − 1 where all non-leading
coefficients lie in 2W . Suppose R is a complete local Noetherian W -algebra with
residue field k for which there is a continuous surjection τ : R → W [[t]]/(f(t)) and
an isomorphism µ : R/2R → k[s]/(s2d−2

) of W -algebras. Then R is isomorphic
to W [[t]]/(f(t)(t − 2γ), α2mf(t)) as a W -algebra, where γ ∈ W , α ∈ {0, 1} and
0 < m ∈ Z.

Proof. It follows from the assumptions that there is a continuous W -algebra surjec-
tion ψ : W [[t]] → R. Then τ ◦ ψ : W [[t]] → W [[t]]/(f(t)) is a surjective W -algebra
homomorphism. Hence modulo 2, t is sent to a generator of the maximal ideal of
W [[t]]/(2, f(t)) ∼= k[[t]]/(t2

d−2−1), which means that t is sent to u(t) · t for some
unit u(t) in W [[t]]/(2, f(t)). Since we can lift u(t) to a unit in W [[t]], we see that
τ (ψ(t)) = v(t) · t + 2b(t) for certain v(t) ∈ W [[t]]∗ and b(t) ∈ W [[t]]. Composing
ψ with the continuous W -algebra automorphism W [[t]] → W [[t]] which sends t to
v(t)−1(t − 2b(t)), we can assume that τ (ψ(t)) = t. Then ker(τ ◦ ψ) is the ideal
(f(t)) = W [[t]] · f(t). Hence the kernel J of ψ is contained in the ideal (f(t)).
Moreover, J is properly contained in (f(t)), since otherwise J = (f(t)), and then
R ∼= W [[t]]/(f(t)) as W -algebras. But this is impossible, since R/2R ∼= k[s]/(s2d−2

).
The maximal ideal of W [[t]] is generated by 2 and t. So the maximal ideal of

R/2R is generated by the image of t under the surjection W [[t]] → R/2R induced
by ψ : W [[t]] → R. However, the isomorphism µ : R/2R → k[s]/(s2d−2

) shows that
as a W -module, R/2R is generated by 1 together with the powers ξ, ξ2, . . . , ξ2d−2−1

for any generator ξ of the maximal ideal of R/2R. So R/2R is generated as a
W -module by the images of 1, t, t2, . . . , t2

d−2−1. Hence the image of W ⊕Wt⊕· · ·⊕
Wt2

d−2−1 ⊂ W [[t]] under ψ : W [[t]] → R must be all of R, since R is complete.
Thus ψ(t2

d−2
) = ψ(a0+a1t+· · ·+a2d−2−1t

2d−2−1) for some a0, a1, . . . , a2d−2−1 ∈ W .
This means that t2

d−2 − (a0 + a1t + · · ·+ a2d−2−1t
2d−2−1) = j ∈ J . But J ⊆ (f(t)),

so

(2.3.4) t2
d−2 − (a0 + a1t + · · · + a2d−2−1t

2d−2−1) = f(t) · q(t)

for a unique q(t) ∈ W [[t]]. Let q(t) = c0 + t +
∑∞

i=1 cit
i. Suppose there exists i ≥ 1

with ci �= 0. Letting r = min{ord2(ci) | i ≥ 1}, we can rewrite q(t) = c0+t+2rtw(t)
for some w(t) ∈ W [[t]], which is not congruent to the zero power series modulo 2.
Comparing the coefficients modulo 2r+1 of the terms of degree at least 2d−2 on
both sides of (2.3.4), we see that 2rw(t) must be congruent to the zero power
series modulo 2r+1, which is impossible. Hence q(t) = t + c0 for some c0 ∈ W .
Moreover, c0 is in 2W , since otherwise c0 ∈ W ∗ and hence t + c0 ∈ W [[t]]∗. But
then f(t) = (t+c0)−1j ∈ J , which is impossible, since we showed that J is properly
contained in (f(t)). So c0 = −2γ for some γ ∈ W .

This means f(t)(t − 2γ)W [[t]] ⊆ J ⊂ f(t)W [[t]]. Hence J = f(t)J ′, where

(t − 2γ) = (t − 2γ)W [[t]] ⊆ J ′ ⊂ W [[t]]

and J ′ �= W [[t]]. Therefore, J ′/(t − 2γ) is a proper ideal of W [[t]]/(t − 2γ) ∼= W ,
and hence is either zero or generated by a positive power of 2. It follows that J ′ =
(t−2γ, α2m), where α ∈ {0, 1} and m ∈ Z+. Thus J = (f(t)(t−2γ), α2mf(t)). �

We now specialize to a particular f(t).
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Definition 2.3.4. Suppose k has characteristic p = 2. Let F be the fraction field
of W , and fix an algebraic closure F of F . Let d ≥ 3 be an integer, and let ζ2� be
a fixed primitive 2�-th root of unity in F for 2 ≤ � ≤ d − 1.

(i) Define

pd(t) =
d−1∏
�=2

min.pol.F (ζ2� + ζ−1
2� ),

and let R′ = W [[t]]/(pd(t)).
(ii) Let Z = 〈σ〉 be a cyclic group of order 2d−1, and let τ : Z → Z be the group

automorphism sending σ to σ−1. Then τ can be extended to a W -algebra
automorphism of the group ring WZ which will again be denoted by τ . Let
T (σ2) = 1 + σ2 + σ4 + · · · + σ2d−1−2, and define

S′ = (WZ)〈τ〉/
(
T (σ2), σT (σ2)

)
.

Remark 2.3.5. The minimal polynomial min.pol.F (ζ2� +ζ−1
2� ) for � ≥ 2 is as follows:

min.pol.F (ζ22 + ζ−1
22 )(t) = t,

min.pol.F (ζ2� + ζ−1
2� )(t) =

(
min.pol.F (ζ2�−1 + ζ−1

2�−1)(t)
)2 − 2 for � ≥ 3.

The W -algebra R′ from Definition 2.3.4 is a complete local Noetherian ring with
residue field k. Moreover,

F ⊗W R′ ∼=
d−1∏
�=2

F (ζ2� + ζ−1
2� ) as F -algebras,

k ⊗W R′ ∼= k[t]/(t2
d−2−1) as k-algebras.

Additionally, for any sequence (r�)
d−1
�=2 of odd integers, R′ is isomorphic to the

W -subalgebra of
d−1∏
�=2

W [ζ2� + ζ−1
2� ]

generated by the element
(
ζr�

2� + ζ−r�

2�

)d−1

�=2
.

Lemma 2.3.6. Using the notation of Definition 2.3.4, there is a continuous W -
algebra isomorphism ρ : R′ → S′ with ρ(t) = σ + σ−1.

Suppose now that D2d is a dihedral group of order 2d. If in Lemma 2.3.3 the
polynomial f(t) is taken to be equal to pd(t), α = 1 and m = 1, then the ring R in
Lemma 2.3.3 is isomorphic to a subquotient algebra of the group ring WD2d .

Proof. The ring of invariants (WZ)〈τ〉 is a free W -module with basis

{1, σ + σ−1, σ2 + σ−2, . . . , σ2d−2−1 + σ−2d−2+1, σ2d−2}.
Hence the W -rank of this module is 2d−2 + 1. Expanding expressions of the form
(σ + σ−1)� for various �, one sees that as a W -algebra (WZ)〈τ〉 is generated by
(σ + σ−1) and σ2d−2

. In S′, the residue class of σ2d−2
can be expressed as a

polynomial in (σ + σ−1), which means that S′ is generated as a W -algebra by the
residue class of (σ + σ−1). Since the residue class of (σ2d−2−1 + σ−2d−2+1) can also
be expressed as a polynomial in (σ + σ−1) in S′ and since S′ has no torsion, we
conclude that S′ is a free W -module of rank 2d−2 + 1 − 2 = 2d−2 − 1.
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Define ρ̂ : W [[t]] → S′ to be the continuous W -algebra homomorphism sending
t to the residue class of (σ + σ−1). Then ρ̂ is surjective. Using the description of
the minimal polynomial of (ζ2� + ζ−1

2� ), 2 ≤ � ≤ d − 1, over F in Remark 2.3.5, we
see that

[min.pol.F (ζ2� + ζ−1
2� )] (σ + σ−1) = σ2�−2

+ σ−2�−2
.

Hence we have

(2.3.5) pd(σ + σ−1) =
d−1∏
�=2

(σ2�−2
+ σ−2�−2

),

and we see by induction that the latter is equal to

(2.3.6) (σ + σ−1) + (σ3 + σ−3) + · · · + (σ2d−2−1 + σ−2d−2+1) = σT (σ2),

which is zero in S′. Thus pd(t) lies in the kernel of ρ̂. This means that we obtain
a surjective continuous W -algebra homomorphism

ρ : R′ = W [[t]]/(pd(t)) → S′.

Since both R′ and S′ are free over W of rank 2d−2−1, it follows that ρ is a continuous
W -algebra isomorphism. In particular, R′ is isomorphic to a subquotient algebra
of the group ring WD2d when D2d is a dihedral group of order 2d.

Suppose now that in Lemma 2.3.3 the polynomial f(t) is taken to be equal
to pd(t), α = 1 and m = 1. Then the ring R in this lemma is isomorphic to
W [[t]]/(pd(t)(t−2), 2 pd(t)) as a W -algebra. Thus to finish the proof of Lemma 2.3.6,
it suffices to show that the ring W [[t]]/(pd(t)(t− 2)) is isomorphic to a subquotient
algebra of WD2d . Define

Θ = (WZ)〈τ〉/
(
T (σ2) − σT (σ2)

)
.

Then Θ is isomorphic to a subquotient algebra of WD2d , and it is generated as a
W -algebra by the residue class of (σ+σ−1). Moreover, Θ is a free W -module of rank
2d−2, since the ideal

(
T (σ2) − σT (σ2)

)
is generated over W by T (σ2) − σT (σ2).

Define a continuous W -algebra homomorphism θ : W [[t]] → Θ by sending t to the
residue class of (σ + σ−1). Then, using (2.3.5) and (2.3.6), we see that

θ(pd(t)(t − 2)) = pd(σ + σ−1)((σ + σ−1) − 2)
= σT (σ2)((σ + σ−1) − 2)
= 2

[
T (σ2) − σT (σ2)

]
,

which is zero in Θ. Hence pd(t)(t − 2) lies in the kernel of θ. This means that we
obtain a surjective continuous W -algebra homomorphism

θ : W [[t]]/(pd(t)(t − 2)) → Θ.

Since both W [[t]]/(pd(t)(t− 2)) and Θ are free over W of rank 2d−2, it follows that
θ is a continuous W -algebra isomorphism. Thus W [[t]]/(pd(t)(t− 2)) is isomorphic
to a subquotient algebra of WD2d , which completes the proof of Lemma 2.3.6. �

3. Blocks with dihedral defect groups

Let k be an algebraically closed field of characteristic p = 2, and let W be the
ring of infinite Witt vectors over k. Let G be a finite group, and let B be a block of
kG with dihedral defect groups which is Morita equivalent to the principal block of a
finite simple group. From the classification by Gorenstein and Walter of the groups
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with dihedral Sylow 2-subgroups in [22], it follows that there are three families of
such blocks B, up to Morita equivalence:

(i) the principal 2-modular blocks of PSL2(Fq) where q ≡ 1 mod 4,
(ii) the principal 2-modular blocks of PSL2(Fq) where q ≡ 3 mod 4, and
(iii) the principal 2-modular block of the alternating group A7.

Note that in all cases (i) - (iii), B contains precisely 3 isomorphism classes of simple
modules.

Remark 3.1. In [20], Erdmann classified all blocks with dihedral defect groups. It
follows that if we consider all such blocks B0 containing precisely 3 isomorphism
classes of simple modules, there is one more family attached to case (iii) containing
a Morita equivalence class of possible blocks for each defect d ≥ 3. By [20, §X.4],
the blocks in this family having defect d ≥ 4 cannot be excluded as possible blocks
with dihedral defect groups.

However, if we assume that B0 is Morita equivalent to the principal block of
kH for some finite (not necessarily simple) group H, we can exclude this family as
follows. Since k has characteristic 2, we can assume that H has no normal subgroup
of odd order. By [22], it then follows that H is isomorphic to either a subgroup of
PΓL2(Fq) containing PSL2(Fq) for some odd prime power q, or to the alternating
group A7. Using a theorem by Clifford [23, Hauptsatz V.17.3], we see that the only
possibility for B0 to be Morita equivalent to a block in the bigger family attached
to case (iii) occurs when B0 has defect d = 3, i.e. B0 is Morita equivalent to the
principal 2-modular block of the alternating group A7.

The blocks in (i), (ii) and (iii) are all Morita equivalent to basic algebras of
special biserial algebras. (For the relevant background on special biserial algebras
we refer to §7.) In §3.1, §3.2 and §3.3, we give the quivers and relations for the basic
algebras of these blocks, together with their projective indecomposable modules and
their decomposition matrices. In §3.4, we then state some results from [9] about
the ordinary irreducible characters of G which belong to B.

3.1. The principal 2-modular block of PSL2(Fq) when q ≡ 1 mod 4. Let G
be a finite group, and let B be a block of kG which is Morita equivalent to the
principal block of kPSL2(Fq) where q ≡ 1 mod 4. Suppose that 2d is the order of
the defect groups of B, i.e. the order of the Sylow 2-subgroups of PSL2(Fq). Then,
by [20], B is Morita equivalent to the special biserial algebra Λ = kQ/I, where Q
is given in Figure 3.1.1 and

I = 〈γβ, δη, (ηδβγ)2
d−2

− (βγηδ)2
d−2

〉.
We denote the irreducible Λ-modules by S0, S1, S2, or, using short-hand, by 0, 1, 2.

Q =
0

1 •
β ��
γ

�� •
δ ��
η

�� • 2

Figure 3.1.1. The quiver Q for blocks as in §3.1.

The radical series of the projective indecomposable Λ-modules (and hence of the
projective indecomposable B-modules) are described in Figure 3.1.2 where the rad-
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P0 =

0
1 2
0 0
2 1
0 0
...

...
0 0
1 2
0 0
2 1

0

, P1 =

1
0
2
0
1
...
0
2
0
1

, P2 =

2
0
1
0
2
...
0
1
0
2

.

Figure 3.1.2. The radical series of the projective indecomposable
modules for blocks as in §3.1.

ical series length of each of these modules is 2d + 1. The decomposition matrix of
B is given in Figure 3.1.3.

ϕ0 ϕ1 ϕ2

χ1

χ2

χ3

χ4

χ5,i

⎡
⎢⎢⎢⎢⎣

1 0 0
1 1 0
1 0 1
1 1 1
2 1 1

⎤
⎥⎥⎥⎥⎦

1 ≤ i ≤ 2d−2 − 1.

Figure 3.1.3. The decomposition matrix for blocks as in §3.1.

3.2. The principal 2-modular block of PSL2(Fq) when q ≡ 3 mod 4. Let G
be a finite group, and let B be a block of kG which is Morita equivalent to the
principal block of kPSL2(Fq), where q ≡ 3 mod 4. Suppose that 2d is the order of
the defect groups of B. Then, by [20], B is Morita equivalent to the special biserial
algebra Λ = kQ/I, where Q is given in Figure 3.2.1 and

I = 〈δβ, λδ, βλ, κγ, ηκ, γη, γβ − λκ, κλ − (δη)2
d−2

, (ηδ)2
d−2 − βγ〉.

We denote the irreducible Λ-modules by S0, S1, S2, or, using short-hand, by 0, 1, 2.
The radical series of the projective indecomposable Λ-modules (and hence of the
projective indecomposable B-modules) are described in Figure 3.2.2 where for i ∈
{1, 2}, rad(Pi)/soc(Pi) is isomorphic to the direct sum of S0 and a uniserial module
of length 2d−1 − 1. The decomposition matrix of B is given in Figure 3.2.3.

3.3. The principal 2-modular block of A7. Let G be a finite group, and let B
be a block of kG which is Morita equivalent to the principal block of kA7. Suppose
that 2d is the order of the defect groups of B. Then d = 3, and by [20], B is Morita
equivalent to the special biserial algebra Λ = kQ/I, where Q is given in Figure
3.3.1 and

I = 〈βα, αγ, γβ, δη, ηδβγ − βγηδ, α2 − γηδβ〉.
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Q =

0 •
β ��
γ

��

κ

���
��

��
��

��
��

��

λ

���������������

• 1

δ

����
��
��
��
��
��
�

η

���������������
•
2

Figure 3.2.1. The quiver Q for blocks as in §3.2.

P0 =
0

1 2
0

, P1 =

1
0 2

1
2
...
1
2

1

, P2 =

2
0 1

2
1
...
2
1

2

.

Figure 3.2.2. The radical series of the projective indecomposable
modules for blocks as in §3.2.

ϕ0 ϕ1 ϕ2

χ1

χ2

χ3

χ4

χ5,i

⎡
⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
1 1 1
0 1 1

⎤
⎥⎥⎥⎥⎦

1 ≤ i ≤ 2d−2 − 1.

Figure 3.2.3. The decomposition matrix for blocks as in §3.2.

We denote the irreducible Λ-modules by S0, S1, S2, or, using short-hand, by 0, 1, 2.

Q =
1 0
•α ��

β ��
γ

�� •
δ ��
η

�� • 2

Figure 3.3.1. The quiver Q for blocks as in §3.3.

The radical series of the projective indecomposable Λ-modules (and hence of the
projective indecomposable B-modules) are described in Figure 3.3.2 where rad(P1)/
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P0 =

0
1 2
0 0
2 1

0

, P1 =

1
1 0

2
0

1

, P2 =

2
0
1
0
2

.

Figure 3.3.2. The radical series of the projective indecomposable
modules for blocks as in §3.3.

soc(P1) is isomorphic to the direct sum of S1 and a uniserial module with radical
series (S0, S2, S0). The decomposition matrix of B is given in Figure 3.3.3.

ϕ0 ϕ1 ϕ2

χ1

χ2

χ3

χ4

χ5,i

⎡
⎢⎢⎢⎢⎣

1 0 0
1 1 0
1 0 1
1 1 1
0 1 0

⎤
⎥⎥⎥⎥⎦

i = 1.

Figure 3.3.3. The decomposition matrix for blocks as in §3.3.

3.4. Ordinary characters for blocks with dihedral defect groups. Let G be
a finite group and let B be a block of kG with dihedral defect group D of order 2d

where d ≥ 3. Moreover, assume that B contains exactly three isomorphism classes
of simple kG-modules. This means that in the notation of [9, §4] we are in Case
(aa) (see [9, Thm. 2]).

Let F be the fraction field of W , and let ζ2� be a fixed primitive 2�-th root of
unity in an algebraic closure of F for 2 ≤ � ≤ d − 1. Let

χ1, χ2, χ3, χ4, χ5,i, 1 ≤ i ≤ 2d−2 − 1,

be the ordinary irreducible characters of G belonging to B. Let σ be an element
of order 2d−1 in D. By [9], there is a block bσ of kCG(σ) with bG

σ = B which
contains a unique 2-modular character ϕ(σ) such that the following is true. There
is an ordering of (1, 2, . . . , 2d−2 − 1) such that for 1 ≤ i ≤ 2d−2 − 1 and r odd,

(3.4.1) χ5,i(σr) = (ζri
2d−1 + ζ−ri

2d−1) · ϕ(σ)(1).

Note that W contains all roots of unity of order not divisible by 2. Hence by
[9] and by [21], the characters χ1, χ2, χ3, χ4 correspond to simple FG-modules. On
the other hand, the characters χ5,i, i = 1, . . . , 2d−2 − 1, fall into d− 2 Galois orbits
O2, . . . ,Od−1 under the action of Gal(F (ζ2d−1+ζ−1

2d−1)/F ). Namely for 2 ≤ � ≤ d−1,
O� = {χ5,2d−1−�(2u−1) | 1 ≤ u ≤ 2�−2}. The field generated by the character values
of each ξ� ∈ O� over F is F (ζ2� + ζ−1

2� ). Hence by [21], each ξ� corresponds to an
absolutely irreducible F (ζ2� + ζ−1

2� )G-module X�. By [23, Satz V.14.9], this implies
that for 2 ≤ � ≤ d−1, the Schur index of each ξ� ∈ O� over F is 1. Hence we obtain



3678 FRAUKE M. BLEHER

d−2 non-isomorphic simple FG-modules V2, . . . , Vd−1 with characters ρ2, . . . , ρd−1

satisfying

(3.4.2) ρ� =
∑

ξ�∈O�

ξ� =
2�−2∑
u=1

χ5,2d−1−�(2u−1) for 2 ≤ � ≤ d − 1.

By [23, Hilfssatz V.14.7], EndFG(V�) is a commutative F -algebra isomorphic to the
field generated over F by the character values of any ξ� ∈ O�. This means

(3.4.3) EndFG(V�) ∼= F (ζ2� + ζ−1
2� ) for 2 ≤ � ≤ d − 1.

By [9], the characters χ5,i have the same degree x for 1 ≤ i ≤ 2d−2 − 1. The
characters χ1, χ2, χ3, χ4 have height 0 and χ5,i, 1 ≤ i ≤ 2d−2 − 1, have height
1. Hence x = 2a−d+1x∗, where #G = 2a · g∗ and x∗ and g∗ are odd. Since the
centralizer CG(σ) contains 〈σ〉, we have #CG(σ) = 2d−1 · 2b · m∗, where b ≥ 0 and
m∗ is odd. Suppose ϕ(σ)(1) = 2c · n∗, where c ≥ 0 and n∗ is odd. Note that if ψ is
an ordinary irreducible character of CG(σ) belonging to the block bσ, then by [30,
p. 61], ψ(1) divides (#CG(σ))/(#〈σ〉) = 2b · m∗. Because ψ(1) = sψ · ϕ(σ)(1) for
some positive integer sψ, we have c ≤ b.

Let C be the conjugacy class in G of σ, and let t(C) ∈ WG be the class sum of C.
We want to determine the action of t(C) on V� for 2 ≤ � ≤ d−1. For this, we identify
EndFG(V�) ∼= F (ζ2� + ζ−1

2� ) with EndF (ζ2�+ζ−1
2� )G(X�) for one particular absolutely

irreducible F (ζ2� + ζ−1
2� )G-constituent X� of V� with character ξ�. By (3.4.2), we

can choose ξ� = χ5,2d−1−� . Then, under this identification, for 2 ≤ � ≤ d − 1, the
action of t(C) on V� is given as multiplication by

#C

ξ�(1)
· ξ�(σ) =

#C

ξ�(1)
· ϕ(σ)(1) · (ζ2d−1−�

2d−1 + ζ−2d−1−�

2d−1 )(3.4.4)

=
[G : CG(σ)]

x
· ϕ(σ)(1) · (ζ2d−1−�

2d−1 + ζ−2d−1−�

2d−1 )

= 2c−b g∗ · n∗

m∗ · x∗ · (ζ2d−1−�

2d−1 + ζ−2d−1−�

2d−1 ),

where, as shown above, c ≤ b. Note that g∗·n∗

m∗·x∗ is a unit in W , since g∗ · n∗ and
m∗ · x∗ are odd. Since t(C) ∈ WG, we must have c ≥ b, i.e. c = b. Therefore,
(3.4.4) implies that there exists a unit ω in W such that for 2 ≤ � ≤ d − 1, the
action of t(C) on V� is given as multiplication by

(3.4.5) ω · (ζ2d−1−�

2d−1 + ζ−2d−1−�

2d−1 )

when we identify EndFG(V�) with EndF (ζ2�+ζ−1
2� )G(X�) for an absolutely irreducible

F (ζ2� + ζ−1
2� )G-constituent X� of V� with character χ5,2d−1−� .

4. Universal deformation rings modulo 2

As in §3, let k be an algebraically closed field of characteristic p = 2, let G be
a finite group, and let B be a block of kG with dihedral defect groups containing
precisely three isomorphism classes of simple kG-modules. Suppose 2d is the order
of the defect groups of B. In this section, we determine the universal deformation
ring modulo 2 for all finitely generated B-modules with stable endomorphism ring
k. Since the case d = 2 has been done in [4], we assume throughout this section
that d ≥ 3.



UNIVERSAL DEFORMATION RINGS AND DIHEDRAL DEFECT GROUPS 3679

In §4.1, we first look at blocks B that are Morita equivalent to blocks as in §3.1.
In §4.2, we then show how stable equivalences of Morita type can be used to get
analogous results for blocks B that are Morita equivalent to blocks as in §3.2 and
§3.3.

4.1. Universal deformation rings modulo 2 for blocks as in §3.1. The ob-
jective of this subsection is to prove the following result:

Proposition 4.1.1. Let B be a block of kG which is Morita equivalent to Λ = kQ/I
with Q and I as in §3.1. Suppose 2d is the order of the defect groups of B with
d ≥ 3. Denote the three simple B-modules by T0, T1 and T2, where Ti corresponds
to Si, for i ∈ {0, 1, 2}, under the Morita equivalence. Let C be a component of the
stable Auslander-Reiten quiver of B containing a module with endomorphism ring
k. Then C contains a simple module, or a uniserial module of length 4.

(i) Suppose C contains T0. Then C and Ω(C) are both of type ZA∞
∞. All

modules M in C ∪ Ω(C) have stable endomorphism ring equal to k and
R(G, M)/2R(G, M) ∼= k.

(ii) Let i ∈ {1, 2}, and suppose C contains Ti. Then C is a 3-tube with Ti

belonging to its boundary, and C = Ω(C). If M lies in C having stable
endomorphism ring k, then M ∈ {Ti, Ω2(Ti), Ω4(Ti)} up to isomorphism,
and R(G, M)/2R(G, M) ∼= k.

(iii) Suppose C contains a uniserial module Y of length 4. Then C and Ω(C) are
both of type ZA∞

∞, and C = Ω(C) exactly when d = 3. If M lies in C∪Ω(C)
having stable endomorphism ring k, then M is isomorphic to Ωj(Y ) for
some integer j, and R(G, M)/2R(G, M) ∼= k[t]/(t2

d−2
).

The only components of the stable Auslander-Reiten quiver of B containing modules
with stable endomorphism ring k are the ones in (i) - (iii).

Remark 4.1.2. If B is as in Proposition 4.1.1, then there are precisely four uniserial
B-modules of length 4:

Y1 =

T1

T0

T2

T0

, Ω2(Y1) =

T0

T2

T0

T1

, Y2 =

T2

T0

T1

T0

, Ω2(Y2) =

T0

T1

T0

T2

.

To prove Proposition 4.1.1, we need several lemmas.

Lemma 4.1.3. Let Λ = kQ/I with Q and I as in §3.1. Let C0 be the component of
the stable Auslander-Reiten quiver of Λ containing S0. Let M be an indecomposable
Λ-module with EndΛ(M) = k. Then M either lies in C0, or M is isomorphic to S1

or S2, or M is uniserial of length 4.

Proof. Suppose first that S0 is a direct summand of top(M). Then S0 cannot be

a direct summand of soc(M). The modules S0,
0
1 , 0

2 ,

0
1
0
2

,

0
2
0
1

and 0
1 2

have endomorphism ring equal to k. If M is uniserial of length at least 5 or M is
not uniserial of length at least 4, then there is an endomorphism of M factoring

non-trivially through either S0,
0
1 or 0

2 , which is a contradiction.
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Similarly, we see that if S0 is a direct summand of soc(M), then S0 cannot be a

direct summand of top(M) and M must be isomorphic to S0,
1
0 , 2

0 ,

2
0
1
0

,

1
0
2
0

or

1 2
0 .

If S0 is neither a direct summand of top(M) nor of soc(M), then M can only be

isomorphic to S1, S2,
1
0
2

or
2
0
1

, since P1 and P2 are both uniserial.

Of all the above possibilities for M , only S1, S2, and the uniserial modules of
length 4 do not lie in C0. �

The proofs of the following three lemmas are rather technical and will be deferred
to §6. Let Λ = kQ/I with Q and I as in §3.1.

Lemma 4.1.4. Let C0 be the component of the stable Auslander-Reiten quiver of
Λ containing S0, and let M be a Λ-module belonging to C0 ∪ Ω(C0). Then C0 and
Ω(C0) are both of type ZA∞

∞, and EndΛ(M) = k and Ext1Λ(M, M) = 0.

Lemma 4.1.5. Let i ∈ {1, 2}, and let Ci be the component of the stable Auslander-
Reiten quiver of Λ containing Si. Then Ci is a 3-tube with Si belonging to its
boundary, and Ci = Ω(Ci). If M belongs to Ci and has stable endomorphism ring
k, then M is in the Ω-orbit of Si and Ext1Λ(M, M) = 0.

Lemma 4.1.6. Let C be a component of the stable Auslander-Reiten quiver of Λ
containing a uniserial module X of length 4. Then C and Ω(C) are both of type
ZA∞

∞, and C = Ω(C) exactly when d = 3. If M belongs to C ∪ Ω(C) and has stable
endomorphism ring k, then M is in the Ω-orbit of X and Ext1Λ(M, M) = k.

Proof of Proposition 4.1.1. The last statement of Proposition 4.1.1 will also be
proved in §6. We now prove the remaining statements. Let C be a component
of the stable Auslander-Reiten quiver of B containing a module with endomor-
phism ring k. By Lemma 4.1.3, C contains a simple module or a uniserial module
of length 4. Part (i) (resp. part (ii)) of Proposition 4.1.1 follows from Lemma 4.1.4
(resp. Lemma 4.1.5). Because of Lemma 4.1.6, Remark 4.1.2 and Lemma 2.1.2,
to prove part (iii) we only need to show R(G, M)/2R(G, M) ∼= k[t]/(t2

d−2
) if M is

either Y1 or Y2. We show this for M = Y1. (The case M = Y2 is proved similarly.)
Let R = R(G, Y1)/2R(G, Y1). By Lemmas 4.1.3 and 4.1.6, we have EndkG(Y1) = k
and Ext1kG(Y1, Y1) = k. The projective indecomposable kG-module PT1 has the

form
T1

U
T1

, where U is uniserial of length 4 · 2d−2 − 1 with descending radical series

(T0, T2, T0, T1, T0, T2, T0, . . . , T1, T0, T2, T0).

If U = T1

U
, then

Ext1kG(U, Y1) = HomkG(Ω(U), Y1) = HomkG(T1, Y1) = 0.

By Lemma 2.3.1, this implies R ∼= k[t]/(t2
d−2

), and the universal mod 2 deformation
of Y over R is represented by the kG-module U . �
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Remark 4.1.7. It follows from the proof of Proposition 4.1.1 that if Y =

Ti

T0

Tj

T0

,

where i �= j in {1, 2}, then the universal mod 2 deformation of Y is represented by
the uniserial kG-module U of length 4 · 2d−2 with descending radical series

(Ti, T0, Tj , T0, Ti, T0, Tj , T0, . . . , Ti, T0, Tj , T0).

Moreover the uniserial kG-module U ′ ∼= U/Y of length 4 · (2d−2 − 1) defines a lift
of Y over k[t]/(t2

d−2−1).

4.2. Universal deformation rings modulo 2 for blocks as in §3.2 and §3.3.
In this subsection we prove analogous results to Proposition 4.1.1 for blocks that
are Morita equivalent to blocks as in §3.2 and §3.3. We start with blocks as in §3.2.

Proposition 4.2.1. Let B be a block of kG which is Morita equivalent to Λ = kQ/I
with Q and I as in §3.2. Suppose 2d is the order of the defect groups of B with
d ≥ 3. Denote the three simple B-modules by T0, T1 and T2, where Ti corresponds
to Si, for i ∈ {0, 1, 2}, under the Morita equivalence. Let C be a component of the
stable Auslander-Reiten quiver of B containing a module with endomorphism ring
k. Then C contains a simple module or a uniserial module of length 2.

(i) Suppose C contains T0. Then Ω(C) contains T1 and T2, and C and Ω(C) are
both of type ZA∞

∞. All modules M in C ∪ Ω(C) have stable endomorphism
ring equal to k and R(G, M)/2R(G, M) ∼= k.

(ii) Let i �= j be in {1, 2}, and suppose C contains T0,i =
T0

Ti
. Then C is

a 3-tube with T0,i and Tj,0 =
Tj

T0
belonging to its boundary, and C =

Ω(C). If M lies in C having stable endomorphism ring k, then M ∈
{T0,i, Ω2(T0,i), Ω4(T0,i)} up to isomorphism, and R(G, M)/2R(G, M) ∼= k.

(iii) Suppose Y ∈
{

T1

T2
,

T2

T1

}
and C contains Y . Then C and Ω(C) are both

of type ZA∞
∞, and C = Ω(C) exactly when d = 3. If M lies in C ∪ Ω(C)

having stable endomorphism ring k, then M is isomorphic to Ωj(Y ) for
some integer j, and R(G, M)/2R(G, M) ∼= k[t]/(t2

d−2
).

The only components of the stable Auslander-Reiten quiver of B containing modules
with stable endomorphism ring k are the ones in (i) - (iii).

To prove Proposition 4.2.1 we need the following result which is proved similarly
to Lemma 4.1.3.

Lemma 4.2.2. Let Λ = kQ/I with Q and I as in §3.2. For i ∈ {0, 1, 2}, let Ci

be the component of the stable Auslander-Reiten quiver of Λ containing Si. Let M
be an indecomposable Λ-module with EndΛ(M) = k. Then M either lies in Ci for
some i, or M is uniserial of length 2.

Proof of Proposition 4.2.1. Let C be a component of the stable Auslander-Reiten
quiver of B containing a module with endomorphism ring k. By Lemma 4.2.2, C

contains a simple module or a uniserial module of length 2.
Let B0 be the principal block of kPSL2(Fq), where q ≡ 1 mod 4 and the Sylow 2-

subgroups of PSL2(Fq) have order 2d. By [26], B and B0 are derived equivalent. By
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[28, Cor. 5.5], this means that there is a stable equivalence of Morita type between
B and B0 given by a B-B0-bimodule Ξ. By Lemma 2.2.3 and Remark 2.2.4, if V is
a finitely generated B0-module with stable endomorphism ring k and V ′ = Ξ⊗B0 V ,
then V ′ has stable endomorphism ring k and R(PSL2(Fq), V )/2R(PSL2(Fq), V ) ∼=
R(G, V ′)/2R(G, V ′). Moreover, V ′ ∼= V ′′⊕P as kG-modules, where P is projective,
V ′′ is indecomposable and R(G, V ′′) ∼= R(G, V ′).

Because of Remark 2.2.5, to complete the proof of Proposition 4.2.1, we need
to find the components of the stable Auslander-Reiten quiver of B0 and of B,
respectively, that correspond to each other under the functor Ξ⊗B0 −, and we need
to match up certain modules in these components. Note that by Remark 2.2.5,
Ξ⊗B0 − commutes with the Heller operator Ω. Let C be a component of the stable
Auslander-Reiten quiver of B containing a module with endomorphism ring k.

Suppose first that C contains T0. Then C is of type ZA∞
∞. Near T0, C looks as in

Figure 4.2.1. Hence Ω(C) contains T1 and T2. By Proposition 4.1.1, it follows that

Ω(T1)

		���
� Ω−1(T1)

T0



����

������

Ω(T2)

������
Ω−1(T2)

Figure 4.2.1. The stable Auslander-Reiten component near T0.

C and Ω(C) correspond to the components of the stable Auslander-Reiten quiver of
B0 as in Proposition 4.1.1(i). This proves part (i) of Proposition 4.2.1.

Let now i �= j be in {1, 2}, and suppose C contains T0,i. Then C is a 3-tube and
T0,i belongs to its boundary. Since Ω2(Tj,0) = T0,i and Ω(T0,i) = Ω−2(T0,i), C also
contains Tj,0 and C = Ω(C). By Proposition 4.1.1, it follows that for i = 1, 2, the
components C correspond to the components of the stable Auslander-Reiten quiver
of B0 as in Proposition 4.1.1(ii). This proves part (ii) of Proposition 4.2.1.

Finally, let i �= j in {1, 2}, and suppose C contains Y = Ti

Tj
. Then C is a

component of type ZA∞
∞ and Y is a module of minimal length in C. Near Y ,

C looks as in Figure 4.2.2, where Y1ij and Y2ij correspond to string modules of
Λ = kQ/I with Q and I as in §3.2 as follows:

Y1ij =
Ti T0

Tj Ti
, Y2ij =

Ti

Tj T0

Ti

.

For all d ≥ 3, Y1ij has a non-trivial endomorphism factoring through Ti which does
not factor through a projective B-module, which means that the k-dimension of
the stable endomorphism ring of Y1ij is at least 2. If d = 3, then Y2ij = Ω(Y ), and
so Ω(C) = C. For d > 3, Y2ij has a non-trivial endomorphism factoring through
Ti which does not factor through a projective B-module, and thus the k-dimension
of the stable endomorphism ring of Y2ij is at least 2. By Proposition 4.1.1 and
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Ω2(Y1ij)

�����
��

Y1ij

Y



�����

�����
��

Y2ij



�����
Ω−2(Y2ij)

Figure 4.2.2. The stable Auslander-Reiten component near Y .

by Remark 4.1.2, it follows that for i �= j in {1, 2}, the components C correspond
to the components of the stable Auslander-Reiten quiver of B0 as in Proposition
4.1.1(iii). This implies part (iii) of Proposition 4.2.1.

Since we have matched up all components of the stable Auslander-Reiten quiver
of B0 containing modules with stable endomorphism ring k to certain components
of the stable Auslander-Reiten quiver of B, it follows that all other components of
the stable Auslander-Reiten quiver of B do not contain any modules with stable
endomorphism ring k. This completes the proof of Proposition 4.2.1. �

Remark 4.2.3. Similarly to Remark 4.1.7, it follows that if Y = Ti

Tj
, where i �= j

in {1, 2}, then the universal mod 2 deformation of Y is represented by the uniserial
kG-module U of length 2 · 2d−2 with descending radical series

(Ti, Tj , Ti, Tj , . . . , Ti, Tj).

Moreover the uniserial kG-module U ′ ∼= U/Y of length 2 · (2d−2 − 1) defines a lift
of Y over k[t]/(t2

d−2−1).

We next turn to blocks as in §3.3.

Proposition 4.2.4. Let B be a block of kG which is Morita equivalent to Λ = kQ/I
with Q and I as in §3.3. Then the order of the defect groups of B is 2d = 8.
Denote the three simple B-modules by T0, T1 and T2, where Ti corresponds to Si,
for i ∈ {0, 1, 2}, under the Morita equivalence, and define Y01102 to be the B-module
corresponding to the Λ-string-module with underlying string βα−1γη. Let C be a
component of the stable Auslander-Reiten quiver of B. If C contains a module with
endomorphism ring k, then C contains a simple module or a uniserial module of
length 4, or Ω(C) contains T0.

(i) Suppose C contains T0. Then C and Ω(C) are both of type ZA∞
∞. All

modules M in C ∪ Ω(C) have stable endomorphism ring equal to k and
R(G, M)/2R(G, M) ∼= k.

(ii) Let i �= j be in {1, 2} and define Ti,0,j,0 =

Ti

T0

Tj

T0

and T0,j,0,i =

T0

Tj

T0

Ti

. Sup-

pose C contains Ti,0,j,0. Then C is a 3-tube with Ti,0,j,0 and T0,j,0,i be-
longing to its boundary, and C = Ω(C). If i = 2, C also contains T2.
In both cases, if M lies in C having stable endomorphism ring k, then
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M ∈ {Ti,0,j,0, Ω2(Ti,0,j,0), Ω4(Ti,0,j,0)} up to isomorphism and R(G, M)/
2R(G, M) ∼= k.

(iii) Suppose Y ∈ {T1, Y01102} and C contains Y . Then C = Ω(C) is of type
ZA∞

∞. If Y = Y01102, then C contains no B-modules with endomorphism
ring k. In both cases, if M lies in C having stable endomorphism ring k,
then M is isomorphic to Ωj(Y ) for some integer j and R(G, M)/2R(G, M)
∼= k[t]/(t2).

The only components of the stable Auslander-Reiten quiver of B containing modules
with stable endomorphism ring k are the ones in (i) - (iii).

The proof of Proposition 4.2.4 is similar to the proof of Proposition 4.2.1 using
the following result in place of Lemma 4.2.2.

Lemma 4.2.5. Let Λ = kQ/I with Q and I as in §3.3. For i ∈ {0, 1, 2}, let Ci be
the component of the stable Auslander-Reiten quiver of Λ containing Si. Let M be
an indecomposable Λ-module with EndΛ(M) = k. Then M either lies in C0∪Ω(C0)
or in Ci for an i ∈ {1, 2}, or is uniserial of length 4.

Remark 4.2.6. Similarly to Remark 4.1.7, it follows that the universal mod 2 de-
formation of T1 is represented by the uniserial kG-module U1 with radical series
(T1, T1).

The universal mod 2 deformation of Y01102 can be obtained as follows. There is
a non-split short exact sequence of kG-modules

0 → Ω(Y01102) → PT1 ⊕ PT2 → Y01102 → 0,

where PT1 (resp. PT2) is the projective indecomposable kG-module with top T1

(resp. T2). Moreover, there is a natural surjection Ω(Y01102) → Y01102 with kernel
isomorphic to T2. Thus there is a non-split short exact sequence of kG-modules

(4.2.1) 0 → Y01102 → PT1 ⊕ PT2/T2 → Y01102 → 0

representing a non-zero element in Ext1kG(Y01102, Y01102). Hence the universal mod
2 deformation of Y01102 is represented by the kG-module PT1 ⊕ PT2/T2.

5. Universal deformation rings

We assume the notation from §3 and §4. In this section, we determine the
universal deformation rings of all finitely generated kG-modules which belong to B
and have stable endomorphism ring equal to k. Since the case d = 2 has been done
in [4], we assume throughout this section that d ≥ 3.

In §5.1, we state our main theorem, Theorem 5.1, and some consequences con-
cerning local complete intersections (see Corollary 5.1.2). In §5.2, we analyze the
modules belonging to the boundaries of 3-tubes. In §5.3, we then use these results
together with the results from §3.4 to prove Theorem 5.1.

5.1. The main theorem.

Theorem 5.1. Let G be a finite group, and let B be a block of kG with dihedral
defect group D of order 2d, where d ≥ 3. Assume that B is Morita equivalent to
the principal 2-modular block of a finite simple group. Then B is Morita equivalent
to a block as in §3.1, §3.2 or §3.3. Let V be a finitely generated indecomposable B-
module with stable endomorphism ring k, and let C be the component of the stable
Auslander-Reiten quiver of B containing V .
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(i) If C or Ω(C) is as in part (i) of Propositions 4.1.1, 4.2.1 or 4.2.4, then
R(G, V ) is isomorphic to a quotient ring of W .

(ii) If C or Ω(C) is as in part (ii) of Propositions 4.1.1, 4.2.1 or 4.2.4, then
R(G, V ) is isomorphic to k.

(iii) If C or Ω(C) is as in part (iii) of Propositions 4.1.1, 4.2.1 or 4.2.4, then
R(G, V ) is isomorphic to

W [[t]]/(pd(t)(t − 2), 2 pd(t))

as a W -algebra, where pd(t) ∈ W [t] is as in Definition 2.3.4.
In all cases (i) - (iii), R(G, V ) is isomorphic to a subquotient ring of WD. The
only components of the stable Auslander-Reiten quiver of B containing modules
with stable endomorphism ring k are the ones in (i) - (iii).

Remark 5.1.1. Using Lemma 2.3.2, we can prove that if V belongs to C as in part
(i) of Theorem 5.1, then R(G, V ) ∼= W .

Corollary 5.1.2. Assuming the notations of Theorem 5.1, suppose C is as in part
(iii) of Propositions 4.1.1, 4.2.1 or 4.2.4. Let V be a finitely generated indecom-
posable kG-module in C with stable endomorphism ring k. Then R(G, V ) is not a
complete intersection ring.

In particular, there is an infinite series of finite groups G and indecomposable
kG-modules V such that R(G, V ) is not a complete intersection. This series is given
by G = PSL2(Fq) for q an odd prime power and 8 dividing #G, and V = Ωi(V ′)
for i ∈ Z, where V ′ is a uniserial kG-module belonging to the principal block of
kG with radical series length 4 (resp. radical series length 2 and no composition
factor isomorphic to the trivial simple module) in case q ≡ 1 mod 4 (resp. q ≡ 3
mod 4). Moreover, in case G = A7, the unique (up to isomorphism) irreducible
kG-module V of dimension 14 provides an example of an irreducible V such that
R(G, V ) is not a complete intersection.

5.2. Modules at the boundaries of three-tubes. We first summarize the
known facts about the modules belonging to the boundaries of 3-tubes in the stable
Auslander-Reiten quiver of one of the blocks B under consideration. These facts
can be found e.g. in [20, Chapter V].

Facts 5.2.1. Let G be a finite group, and let B be a block of kG with dihedral
defect group D of order 2d, where d ≥ 3. Assume that B contains exactly three iso-
morphism classes of simple kG-modules. Then the stable Auslander-Reiten quiver
of B has exactly two 3-tubes. Suppose V is a finitely generated indecomposable
B-module belonging to the boundary of a 3-tube. Then the vertices of V are Klein
four groups. Let K be a vertex of V .

(i) The quotient group NG(K)/CG(K) is isomorphic to a symmetric group S3.
(ii) There is a block b of kNG(K) with bG = B such that the Green correspon-

dent fV of V belongs to the boundary of a 3-tube in the stable Auslander-
Reiten quiver of b. Moreover, b is Morita equivalent to kS4 modulo the
socle.

Lemma 5.2.2. Suppose K and b are as in Facts 5.2.1. Let H = NG(K), let
C = CG(K), and let N be a normal subgroup of H of index 2 containing C.

(i) There is a unique block b1 of kN with defect group K which is covered by
b. Moreover, bH

1 = b, and b1 is Morita equivalent to kA4.
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(ii) Let g ∈ H with 〈gN〉 = H/N . Then there is a simple b1-module S0 with
g(S0) ∼= S0, where g(S0) denotes the kN-module such that gxg−1 acts on
g(S0) the same way as x ∈ N acts on S0. The other two representatives
of non-isomorphic simple b1-modules S1 and S2 satisfy g(S1) ∼= S2 and
g(S2) ∼= S1.

(iii) The stable Auslander-Reiten quiver of b1 has two 3-tubes whose modules all
have vertex K. Each b1-module at the end of one 3-tube has as its source
the band module Sω = M(XY −1, ω, 1), and each b1-module at the end of
the other 3-tube has as its source the band module Sω2 = M(XY −1, ω2, 1),
where XY −1 denotes the single band of kK and ω is a primitive cube root
of unity in k.

Proof. It follows from [1, Thm. 15.1] that there is a unique block b1 of kN with
defect group K which is covered by b, and that bH

1 = b. Since N/CN (K) has order
3, it follows e.g. from [20, Proof of Prop. V.2.14] that b1 is Morita equivalent to
kA4. This implies part (i).

Now we turn to part (ii). Since there are three isomorphism classes of simple
b1-modules and [H : N ] = 2, there is a simple b1-module S0 with g(S0) ∼= S0. So
we only need to show that g(S1) is not isomorphic to S1. To get a contradiction,
suppose that g(S1) ∼= S1, and hence also g(S2) ∼= S2. For i = 0, 1, 2, consider the
kH-module Xi = IndH

N (Si). Then by Mackey’s Theorem (Xi)N
∼= Si ⊕ g(Si) ∼=

Si ⊕ Si. In particular, Xi is a b-module. If Yi is a simple b-module in the socle
of Xi, then (Yi)N is a submodule of (Xi)N

∼= Si ⊕ Si. Since S0, S1 and S2 are
pairwise non-isomorphic, it follows that Y0, Y1 and Y2 are pairwise non-isomorphic.
But this is a contradiction to b having only two non-isomorphic simple modules.
Hence g(S1) ∼= S2 and vice versa.

Finally, we turn to part (iii). It follows e.g. from [20, Proof of Thm. V.4.1] that
all the b1-modules in a 3-tube have the same vertex and that this vertex must be a
Klein four group. Since K is a defect group of b1, K is a vertex. Let ν̃ ∈ N such that
〈ν̃C〉 = N/C. Then ν̃ acts on K by conjugation which induces an automorphism
ν of K of order 3. Let A = kK ∗ 〈ν〉 be the skew group ring of kK with 〈ν〉. Then
A ∼= kA4 (see e.g. [20, Cor. V.2.4.1]). Let β be a block of kC which is covered by b1.
Then by [20, Proof of Prop. V.2.14], β is Morita equivalent to kK. Let P be the
unique projective indecomposable β-module (up to isomorphism) and identify P
with an inner direct summand of kC. Then EndkC(P ) = kK. Since K is central in
C and we assume P ⊆ kC, right multiplication by any element of kK defines a kC-
module endomorphism of P . If PN = IndN

C (P ), then EndkN (PN ) ∼= A = kK ∗ 〈ν〉
by [20, Proof of Prop. V.2.14]. Moreover, it follows from [20, §V.2.9] and [20,
Proof of Prop. V.2.14] that the right action of kK on P by right multiplication
extends to a right action of A on PN . In particular, the elements of kK act by
right multiplication on PN when identifying PN with an inner direct summand
of kN . In [15], the indecomposable A-modules are described as direct summands
of induced indecomposable kK-modules. This shows that the direct sum of the
A-modules belonging to the boundary of a 3-tube of the stable Auslander-Reiten
quiver of A is isomorphic to A ⊗kK Sρ, where for one 3-tube ρ = ω, for the other
3-tube ρ = ω2, and Sρ is as in part (iii) of the statement of the lemma. Since
PN gives a Morita equivalence between b1 and A, the functor PN ⊗A − sends the
A-modules belonging to the boundary of a 3-tube of the stable Auslander-Reiten
quiver of A to b1-modules which belong to the boundary of a 3-tube of the stable
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Auslander-Reiten quiver of b1. Thus the direct sum of the b1-modules belonging to
the boundary of a 3-tube is isomorphic to

PN ⊗A (A ⊗kK Sρ) ∼= PN ⊗kK Sρ,

where kK acts on PN by right multiplication and ρ = ω or ω2. Since we view
PN as an inner direct summand of kN , it follows that the direct sum of the b1-
modules belonging to the boundary of a 3-tube is isomorphic to a direct summand of
kN⊗kK Sρ = IndN

K Sρ. But this means that Sρ is a source of each of the b1-modules
belonging to the boundary of the 3-tube under consideration. This completes the
proof of Lemma 5.2.2. �

Lemma 5.2.3. Assume the notation from Lemma 5.2.2. Let E0 and E be the two

non-isomorphic simple b-modules such that UE = E
E

belongs to the boundary of

the 3-tube of the stable Auslander-Reiten quiver of b. Then UE is isomorphic to the
induced module IndH

N M for some b1-module M which belongs to the boundary of a
3-tube of the stable Auslander-Reiten quiver of b1. Moreover, K is a vertex of UE ,
and the source of UE is SE = Sω, which is conjugate to Sω2 in NH(K) = H. In
particular, the restriction of SE to any proper subgroup of K is projective.

Proof. For i ∈ {0, 1, 2}, let Xi = IndH
N Si. By Mackey’s Theorem, (Xi)N

∼= Si ⊕
g(Si), where g is as in part (ii) of Lemma 5.2.2. Hence (X0)N

∼= S0 ⊕ S0 and
(Xi)N

∼= S1 ⊕ S2 for i = 1, 2. In particular, for i ∈ {0, 1, 2}, Xi is a b-module.
Let Yi be a simple b-module in the socle of Xi. Since g(Yi) ∼= Yi, it follows that
X1

∼= X2 is simple. Call this simple b-module Y12. By [1, Lemmas 8.5 and 8.6],
induced modules of projective modules are projective, and the induced modules
of the composition factors of a b1-module T provide the composition factors of
the induced module IndH

N T . Since the projective cover of S0 has composition
factors S0, S1, S2, S0 and since the projective covers of E0 and E have 6, resp. 5,
composition factors, it follows that IndH

N S0 has composition factors Y0 and Y0.
This implies that Y0 = E0 and Y12 = E.

Now consider the indecomposable b1-module M = S1

S2
, which belongs to the

boundary of a 3-tube of the stable Auslander-Reiten quiver of b1. By [1, Lemma
8.6(5)], it follows that IndH

N M satisfies a non-split short exact sequence

0 → E → IndH
N M → E → 0,

which implies UE = E
E

∼= IndH
N M .

It follows e.g. from [20, Proof of Thm. V.4.1] that all the modules in 3-tubes
of the stable Auslander-Reiten quiver of b have Klein four groups as vertices. By
Lemma 5.2.2(iii), Sρ is a source of M where ρ = ω or ω2. Hence UE is a direct
summand of IndH

N (IndN
K Sρ) ∼= IndH

K Sρ, which means that K is a vertex of UE and
Sρ is a source of UE . But similarly, we also get that Sρ2 is a source of UE . Because
sources are unique up to conjugation in NH(K) = H, Sω is conjugate to Sω2 in H.
Since SE = Sω has dimension 2 over k and each proper subgroup of K of order
2 acts non-trivially on SE , the restriction of SE to any proper subgroup of K is
projective. This completes the proof of Lemma 5.2.3. �
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Proposition 5.2.4. Assume the notation of Lemmas 5.2.2 and 5.2.3. If U is
an indecomposable b-module belonging to the boundary of the 3-tube of the sta-
ble Auslander-Reiten quiver of b, then U has a universal deformation ring with
R(H, U) ∼= k.

Proof. It follows that U lies in the Ω-orbit of the indecomposable b-module UE . By
Lemma 5.2.3, UE

∼= IndH
N M for some b1-module M which belongs to the boundary

of a 3-tube of the stable Auslander-Reiten quiver of b1. Since b1 is Morita equivalent
to kA4, it follows from [4, Prop. 3.4] that EndkN (M) = k and R(N, M) ∼= k. Since
EndkH(UE) = k and

dimkExt1kH(UE , UE) = 0 = dimkExt1kN (M, M),

Proposition 2.1.3 implies that R(H, UE) ∼= R(N, M) ∼= k. By Lemma 2.1.2, this
implies Proposition 5.2.4. �
Corollary 5.2.5. Assume the notation of Theorem 5.1 and suppose C is as in
part (ii) of Theorem 5.1. Let V be a finitely generated kG-module in C with stable
endomorphism ring k. Then R(G, V ) ∼= k.

Proof. It follows from part (ii) of Propositions 4.1.1, 4.2.1 or 4.2.4 that V is a finitely
generated indecomposable B-module belonging to the boundary of a 3-tube. Hence
we may use the notation of Facts 5.2.1, Lemmas 5.2.2, 5.2.3 and Proposition 5.2.4.
We claim that

(5.2.1) IndG
H fV ∼= V ⊕ projectives.

Since fV belongs to the boundary of the 3-tube of the stable Auslander-Reiten
quiver of b, it lies in the Ω-orbit of UE from Lemma 5.2.3. Since the Green corre-
spondence commutes with Ω (see e.g. [1, Prop. 20.7]), it is enough to show (5.2.1)
in case fV = UE . Using Green correspondence, we know IndG

HUE
∼= V ⊕X, where

X is relatively x-projective and the groups in x have the form sKs−1 ∩K for some
s ∈ G, s �∈ H. Suppose there is an indecomposable summand Y of X which has a
non-trivial vertex Q. Then Q has order 2. Because IndG

H UE is a direct summand
of IndG

K SE , we get that YQ is a direct summand of

(IndG
K SE)Q

∼=
⊕

t∈Q\G/K

IndQ
Q∩tKt−1(t(SE)Q∩tKt−1).

Since each term t(SE)Q∩tKt−1 is projective by Lemma 5.2.3, it follows that YQ is
projective. But Y is a direct summand of IndG

Q(YQ), hence Y is projective. This is a
contradiction to Q being a non-trivial group. This implies (5.2.1). By Proposition
2.1.3 it follows that R(G, V ) ∼= R(H, fV ). Hence Corollary 5.2.5 follows from
Proposition 5.2.4. �
5.3. Proof of Theorem 5.1. Part (i) and part (ii) of Theorem 5.1 and the very last
statement about the components of the stable Auslander-Reiten quiver containing
modules with stable endomorphism ring k follow from Propositions 4.1.1, 4.2.1
or 4.2.4 together with Corollary 5.2.5. Since it follows from Lemma 2.3.6 that
W [[t]]/(pd(t)(t−2), 2 pd(t)) is isomorphic to a subquotient ring of WD when pd(t) ∈
W [t] is as in Definition 2.3.4, it only remains to prove part (iii) of Theorem 5.1.

Let C be as in part (iii) of Theorem 5.1, and let V be a finitely generated
indecomposable kG-module with stable endomorphism ring k belonging to C. By
part (iii) of Propositions 4.1.1, 4.2.1 or 4.2.4, R(G, V )/2R(G, V ) ∼= k[t]/(t2

d−2
).
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We first look at the case when B is as in §3.1. By Proposition 4.1.1(iii) and

Remark 4.1.2, it is enough to consider V , where V is either Y1 =

T1

T0

T2

T0

or Y2 =

T2

T0

T1

T0

. Let V = Y1. (The case V = Y2 is proved similarly.) By Remark 4.1.7, the

universal mod 2 deformation of Y1 is represented by the uniserial kG-module U
with descending radical series

(T1, T0, T2, T0, T1, T0, T2, T0, . . . , T1, T0, T2, T0)

of length 4 · 2d−2. Moreover, the uniserial kG-module U ′ = U/Y1 of length 4 ·
(2d−2−1) defines a lift of Y1 over k[t]/(t2

d−2−1). We show that there is a surjective
continuous W -algebra homomorphism τ : R → R′, where R′ = W [[t]]/(pd(t)) is as
in Definition 2.3.4. We use the notation from §3.4. It follows from the decomposition
matrix in Figure 3.1.3 and [17, Prop. (23.7)] that there is a W -pure WG-sublattice
X ′ of the projective indecomposable WG-module PW

1 with top T1 such that U ′ =
PW

1 /X ′ has F -character
d−1∑
�=2

ρ� =
2d−2−1∑

i=1

χ5,i.

Then U ′/2U ′ is an indecomposable kG-module with top T1 which has the same
decomposition factors as U ′ and is thus isomorphic to U ′. Hence U ′ is a lift of U ′

over W . We want to show that U ′ is in fact a lift of Y1 over R′. We first prove
that R′ is isomorphic to a W -subalgebra of EndWG(U ′). Let σ be an element of
order 2d−1 in D, and let t(C) be the class sum of the conjugacy class C of σ in G.
Since t(C) lies in the center of WG, multiplication by t(C) defines a WG-module
endomorphism of U ′. Since EndWG(U ′) can naturally be identified with a subring
of EndFG(F ⊗W U ′), t(C) acts on U ′ as multiplication by a scalar in F ⊗W R′.
This scalar can be read from the action of t(C) on F ⊗W U ′ =

⊕d−1
�=2 V�. By (3.4.5),

there exists a unit ω in W such that for 2 ≤ � ≤ d − 1, the action of t(C) on V� is
given as multiplication by

ω · (ζ2d−1−�

2d−1 + ζ−2d−1−�

2d−1 )

when we identify EndFG(V�) with EndF (ζ2�+ζ−1
2� )G(X�) for an absolutely irreducible

F (ζ2� + ζ−1
2� )G-constituent X� of V� with character χ5,2d−1−� . Recall from Remark

2.3.5 that R′ can be identified with the W -subalgebra of
⊕d−1

�=2 W [ζ2� + ζ−1
2� ] gen-

erated by (ζr�

2� + ζ−r�

2� )d−1
�=2 for any sequence (r�)d−1

�=2 of odd numbers. This implies
that R′ is isomorphic to a W -subalgebra of EndWG(U ′), and hence U ′ is an R′G-
module. We next prove that U ′ is free as an R′-module. Since U ′ is finitely
generated as a W -module, it is also finitely generated as an R′-module. Since R′

is a local ring, it follows by Nakayama’s Lemma that any k-basis {b1, . . . , bs} of
U ′/max(R′)U ′ ∼= Y1 can be lifted to a set {b1, . . . , bs} of generators of U ′ over R′.
Since F ⊗W U ′ is a free (F ⊗W R′)-module of rank s, it follows that b1, . . . , bs

are linearly independent over R′. Since EndFG(F ⊗W U ′) ∼= F ⊗W R′, this then
implies that EndWG(U ′) ∼= R′. Hence U ′ is a lift of Y1 over R′. We therefore
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have a continuous W -algebra homomorphism τ : R → R′ relative to U ′. Since
U ′/2U ′ is indecomposable as a kG-module, τ must be surjective. By Lemma
2.3.3, it follows that R(G, V ) ∼= W [[t]]/(pd(t)(t − 2c), a2mpd(t)) for some c ∈ W ,
a ∈ {0, 1} and 0 < m ∈ Z. If a = 0 (resp. a = 1), the natural projection
R(G, V ) → W [[t]]/(pd(t)(t − 2c)) (resp. R(G, V ) → (W/2mW )[[t]]/(pd(t)(t − 2c)))
gives a lift of U , when regarded as a kG-module, over W (resp. over W/2mW ).
But U ∼= Ω−1(T1), which implies R(G, U) ∼= k by Corollary 5.2.5. Hence a = 1 and
m = 1, and part (iii) of Theorem 5.1 follows in case B is as in §3.1.

The case when B is as in §3.2 is proved similarly to the case when B is as in §3.1,
using Proposition 4.2.1(iii), Remark 4.2.3 and the decomposition matrix in Figure
3.2.3.

Finally we look at the case when B is as in §3.3. By Proposition 4.2.4(iii), it is
enough to consider V ∈ {T1, Y01102}. If we show that V has a lift over W , then it
follows by Lemma 2.3.3, using Remark 4.2.6 and Corollary 5.2.5, that R(G, V ) ∼=
W [[t]]/(t(t−2), 2 t). Using the decomposition matrix in Figure 3.3.3 and [17, Prop.
(23.7)] we see that there is a lift of T1 over W . To see that Y01102 has a lift over W ,

we consider the two uniserial kG-modules Z1 =
T1

T0
and Z2 =

T2

T0

T1

. Then there

is a non-split short exact sequence of kG-modules

0 → Z2 → Y01102 → Z1 → 0

with Ext1kG(Z1, Z2) = k. It follows from the decomposition matrix in Figure 3.3.3
and [17, Prop. (23.7)] that there exists a lift Xi of Zi over W for i = 1, 2. Moreover,
the F -character of F ⊗W X1 (resp. of F ⊗W X2) is χ2 (resp. χ4). In particular,
HomFG(F⊗W X1, F⊗W X2) = 0. Since HomkG(Z1, Z2) = k, it follows from Lemma
2.3.2 that there is a lift of Y01102 over W . This completes the proof of Theorem
5.1. �

6. Stable endomorphism rings and Ext groups

Assume the notation of §4. In this section we complete the proof of Proposition
4.1.1, by determining which components of the stable Auslander-Reiten quiver of
a block B as in §3.1 contain modules with stable endomorphism ring k and by
determining the Ext groups for these modules. Since there are stable equivalences
of Morita type between B and blocks as in §3.2 or §3.3, we determine at the same
time which components of the stable Auslander-Reiten quiver of the blocks in §3.2
and in §3.3 contain modules with stable endomorphism ring k and also determine
the Ext groups for these modules.

Recall that B is Morita equivalent to the basic algebra Λ of a special biserial
algebra, so we can use the description of indecomposable Λ-modules as string and
band modules (see §7). In §6.1, we give a description of the homomorphisms be-
tween string modules as determined in [25] and provide a short-hand notation for
such homomorphisms. We also give a criterion which helps determine stable ho-
momorphisms between string modules. In §6.2, we prove Lemmas 4.1.4, 4.1.5 and
4.1.6. In §6.3, we consider all components of the stable Auslander-Reiten quiver
of type ZA∞

∞ and prove that the only such components containing a module with
stable endomorphism ring k are precisely those components containing a module
M with EndΛ(M) = k or EndΛ(Ω(M)) = k. In §6.4, we consider the components
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of the stable Auslander-Reiten quiver which are 1-tubes and prove that no 1-tube
contains any modules with stable endomorphism ring k.

We freely use §7 without always explicitly referring to particular results. We
especially use the phrase “canonical k-basis” for string modules as introduced in
§7.1.1 to be able to readily describe homomorphisms between string modules.

6.1. Homomorphisms between string modules.

Remark 6.1.1. Let Λ = kQ/I be a basic special biserial algebra, and let M(S)
(resp. M(T )) be a string module with canonical k-basis {xu}m

u=0 (resp. {yv}n
v=0)

relative to the representative S (resp. T ). Suppose C is a string such that
(i) S ∼s S1CS2 with S1 of length 0 or S1 = S′

1ζ1 and with S2 of length 0 or
S2 = ζ−1

2 S′
2, where S1, S

′
1, S2, S

′
2 are strings and ζ1, ζ2 are arrows in Q; and

(ii) T ∼s T1CT2 with T1 of length 0 or T1 = T ′
1ξ

−1
1 and with T2 of length 0 or

T2 = ξ2T
′
2, where T1, T

′
1, T2, T

′
2 are strings and ξ1, ξ2 are arrows in Q.

Then there exists a non-zero Λ-module homomorphism σC : M(S) → M(T ) which
factors through M(C) and which sends each element of {xu}m

u=0 either to zero
or to an element of {yv}n

v=0, according to the relative position of C in S and T ,
respectively. If e.g. S = s1s2 · · · sm, T = t1t2 · · · tn, and C = si+1si+2 · · · si+� =
t−1
j+�t

−1
j+�−1 · · · t

−1
j+1, then

σC(xi+t) = yj+�−t for 0 ≤ t ≤ �, and σC(xu) = 0 for all other u.

Note that there may be several choices of S1, S2 (resp. T1, T2) in (i) (resp. (ii)). In
other words, there may be several k-linearly independent homomorphisms factoring
through M(C). By [25], every Λ-module homomorphism σ : M(S) → M(T ) is
a k-linear combination of homomorphisms which factor through string modules
corresponding to strings C satisfying (i) and (ii).

The following definition provides a short-hand notation for homomorphisms be-
tween string modules, relative to fixed choices of canonical k-bases.

Definition 6.1.2. Let Λ = kQ/I be a basic special biserial algebra. Suppose
X = M(S) (resp. Y = M(T )) is a string module with canonical k-basis {xu}m

u=0

(resp. {yv}n
v=0) relative to the representative S (resp. T ).

(i) Suppose there exist 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ � ≤ min{m − i, j} such
that α : X → Y defined by

α(xi+t) = yj−�+t for 0 ≤ t ≤ �, and α(xu) = 0 for all other u

is a Λ-module homomorphism. Then we denote α by hom++
(X,Y )(xi, yj , �).

(ii) Suppose there exist 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ � ≤ min{m − i, n − j}
such that β : X → Y defined by

β(xi+t) = yj+�−t for 0 ≤ t ≤ �, and β(xu) = 0 for all other u

is a Λ-module homomorphism. Then we denote β by hom+−
(X,Y )(xi, yj , �).

(iii) Suppose there exist 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ � ≤ min{i, j} such that
γ : X → Y defined by

γ(xi−t) = yj−�+t for 0 ≤ t ≤ �, and γ(xu) = 0 for all other u

is a Λ-module homomorphism. Then we denote γ by hom−+
(X,Y )(xi, yj , �).
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(iv) Suppose there exist 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ � ≤ min{i, n − j} such
that δ : X → Y defined by

δ(xi−t) = yj+�−t for 0 ≤ t ≤ �, and δ(xu) = 0 for all other u

is a Λ-module homomorphism. Then we denote δ by hom−−
(X,Y )(xi, yj , �).

If X = Y , then we write endX instead of hom(X,Y ).

Note that in many of our applications of Definition 6.1.2, xi corresponds to a
source in the linear quiver QS defining M(S) and yj corresponds to a sink in the
linear quiver QT defining M(T ).

We now illustrate cases (i) and (ii) of Definition 6.1.2. Suppose the string S (resp.
T ) is the word S = s1s2 · · · sm (resp. T = t1t2 · · · tn). Then α = hom++

(X,Y )(xi, yj , �)
factors as

α: X=M(S)
π �� M(si+1si+2···si+�)

∼= �� M(tj−�+1tj−�+2···tj)
ι �� M(T )=Y,

where si+1si+2 · · · si+� = tj−�+1tj−�+2 · · · tj as words, and π is the canonical pro-
jection and ι the canonical injection. On the other hand, β = hom+−

(X,Y )(xi, yj , �)
factors as

β: X=M(S)
π �� M(si+1si+2···si+�)

∼= �� M(t−1
j+�t−1

j+�−1···t
−1
j+1)

ι �� M(T )=Y,

where si+1si+2 · · · si+� = t−1
j+�t

−1
j+�−1 · · · t

−1
j+1 as words.

The following is an easy combinatorial lemma which helps determine stable ho-
momorphisms.

Lemma 6.1.3. Let Λ = kQ/I be a basic special biserial algebra. Suppose 0 < µ ∈ Z

and 0 ≤ a < µ. Let M(S) and M(T ) be string modules with canonical k-bases {xu}
and {yv} relative to the representatives S and T , respectively. Suppose that {hi}s

i=1

(resp. {fj}t
j=1) are subsets of {xu} (resp. {yv}). Let ε ∈ {±1, 0} be the sign of

(t − s). For 1 ≤ i ≤ s and 1 ≤ j ≤ t with j − i ≡ a mod µ, assume that the map

λi,j : M(S) → M(T ) defined by λi,j(hi) = fj and λi,j(xu) = 0 for xu �= hi

is a Λ-module homomorphism. Suppose that for all 1 ≤ i ≤ s− 1 and 1 ≤ j ≤ t− 1
with j − i ≡ a mod µ, αi,j = λi,j +λi+1,j+1 factors through a projective Λ-module.
Suppose further that either

(i) ε ≥ 0, and each λ1,j (1 + δ1 ≤ j ≤ t, j − 1 ≡ a mod µ) and each λs,j

(1 ≤ j ≤ t − δ2, j − s ≡ a mod µ) factors through a projective Λ-module
for {δ1, δ2} = {1, ε}; or

(ii) ε ≤ 0, and each λi,1 (1 − δ1 ≤ i ≤ s, 1 − i ≡ a mod µ) and each λi,t

(1 ≤ i ≤ s + δ2, t − i ≡ a mod µ) factors through a projective Λ-module
for {δ1, δ2} = {−1, ε}.

Then for all 1 ≤ i ≤ s and 1 ≤ j ≤ t with j − i ≡ a mod µ, λi,j factors through a
projective Λ-module.

6.2. Components containing modules with endomorphism ring k. In this
subsection, we prove Lemmas 4.1.4, 4.1.5 and 4.1.6. Let Λ = kQ/I with Q and I
as in §3.1.

Proof of Lemma 4.1.4. Let C0 be the component of the stable Auslander-Reiten
quiver of Λ containing S0, and let M be a Λ-module belonging to C0 ∪ Ω(C0). We
need to show that EndΛ(M) = k and Ext1Λ(M, M) = 0.
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Using the description of the components of the stable Auslander-Reiten quiver
of Λ as in §7.2, we see that C0 is of type ZA∞

∞. Moreover, using hooks and cohooks
(see §7.2) we obtain the following. There is an i ∈ Z such that Ωi(M) is isomorphic
to one of the following string modules:

S0, M(β), M(η), or for n ≥ 1,

A1,n = M
((

βγ(δ−1η−1γ−1β−1)2
d−2−1δ−1η−1

)n

γ−1
)

,

A2,n = M
((

βγ(δ−1η−1γ−1β−1)2
d−2−1δ−1η−1

)n)
,

A3,n = M
((

βγ(δ−1η−1γ−1β−1)2
d−2−1δ−1η−1

)n

β
)

,

A′
1,n = M

((
ηδ(γ−1β−1δ−1η−1)2

d−2−1γ−1β−1
)n

δ−1
)

,

A′
2,n = M

((
ηδ(γ−1β−1δ−1η−1)2

d−2−1γ−1β−1
)n)

,

A′
3,n = M

((
ηδ(γ−1β−1δ−1η−1)2

d−2−1γ−1β−1
)n

η
)

.

It is straightforward to check that EndΛ(M) = k and Ext1Λ(M, M) = 0 for M ∈
{S0, M(β), M(η)}. We now demonstrate how to show this for M = A1,n for n ≥ 1.
The other cases are proved similarly. The module A1,n (or more precisely the quiver
defining it) is given in Figure 6.2.1. Let {xr}n2d+1

r=0 be the corresponding canonical
k-basis for A1,n (see §7.1.1). Then there are n sources h1, . . . , hn in the quiver of
A1,n, corresponding to direct summands of top(A1,n), namely hi = x(i−1)2d+2 for
1 ≤ i ≤ n. There are n + 1 sinks f1, . . . , fn+1 in the quiver of A1,n, corresponding
to direct summands of soc(A1,n), namely fj = x(j−1)2d for 1 ≤ j ≤ n and fn+1 =
xn2d+1. By Remark 6.1.1, each endomorphism of A1,n is a k-linear combination of
the elements of

(6.2.1) {idA1,n
}

⋃
{λi,j , µi, ρ

s
i,�, σ

s
i | 1 ≤ i, j ≤ n, 2 ≤ � ≤ n, 1 ≤ s ≤ 2d−2 − 1},

where each of these endomorphisms is defined as follows, using Definition 6.1.2:

λi,j = end++
A1,n

(hi, fj , 0),(6.2.2)

µi = end−+
A1,n

(hi, fn+1, 1),

ρs
i,� = end++

A1,n
(hi, f�, 4s − 2),

σs
i = end++

A1,n
(hi, fn+1, 4s − 1).

Let αi,j = λi,j +λi+1,j+1 for 1 ≤ i, j ≤ n− 1. It follows that αi,j (1 ≤ i, j ≤ n− 1),
λ1,j (2 ≤ j ≤ n), and λn,j (1 ≤ j ≤ n) each factors through the projective Λ-
module P0. Hence by Lemma 6.1.3, λi,j (1 ≤ i, j ≤ n) factors through a projective
Λ-module. Let βi = λi−1,n + µi for 2 ≤ i ≤ n. Then it follows that βi (2 ≤ i ≤ n)
and µ1 each factors through P0. Hence µi (1 ≤ i ≤ n) factors through a projective
Λ-module. It also follows that ρs

i,� (1 ≤ i ≤ n, 2 ≤ � ≤ n, 1 ≤ s ≤ 2d−2 − 1), and σs
i

(1 ≤ i ≤ n, 1 ≤ s ≤ 2d−2 − 1) each factors through P0. Hence EndΛ(A1,n) = k for
all n ≥ 1.

Using the fact that Ext1Λ(A1,n, A1,n) = HomΛ(Ω(A1,n), A1,n) and analyzing the
quiver defining Ω(A1,n), one shows in a similar fashion that Ext1Λ(A1,n, A1,n) = 0
for all n ≥ 1. This completes the proof of Lemma 4.1.4. �
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Figure 6.2.1. The module A1,n.

Proof of Lemma 4.1.5. Let i ∈ {1, 2} and let Ci be the component of the stable
Auslander-Reiten quiver of Λ containing Si. We need to show that Ci is a 3-tube
with Si belonging to its boundary, and Ci = Ω(Ci). Moreover, if M belongs to Ci

and has stable endomorphism ring k, we need to show that M is in the Ω-orbit of
Si and Ext1Λ(M, M) = 0.

We prove this for i = 1. (The case i = 2 is treated similarly.) The component
C1 is a 3-tube with boundary consisting of S1, Ω2(S1) = P1/S1, and Ω4(S1) =
Ω(S1). Since Ω maps the boundary to itself, it follows that C1 = Ω(C1). It is
straightforward to check that EndΛ(M) = k and Ext1Λ(M, M) = 0 for M belonging
to the boundary of C1. It remains to show that all other modules X belonging to
C1 but not to its boundary have stable endomorphism ring of k-dimension larger
than 1.

Using hooks and cohooks (see §7.2), we obtain the following. If X belongs to C1

but not to its boundary, then there exist integers j, n with n ≥ 1 such that Ωj(X)



UNIVERSAL DEFORMATION RINGS AND DIHEDRAL DEFECT GROUPS 3695

is isomorphic to one of the following string modules:

X1,n = M

(
γ(δ−1η−1γ−1β−1)2

d−2−1δ−1η−1

·
(
βγ(δ−1η−1γ−1β−1)2

d−2−1δ−1η−1
)n−1

γ−1

)
,

X2,n = M

(
γ(δ−1η−1γ−1β−1)2

d−2−1δ−1η−1

·
(
βγ(δ−1η−1γ−1β−1)2

d−2−1δ−1η−1
)n−1

)
,

X3,n = M

(
γ(δ−1η−1γ−1β−1)2

d−2−1δ−1η−1

·
(
βγ(δ−1η−1γ−1β−1)2

d−2−1δ−1η−1
)n−1

β

)
.

Let {x1,n
r }n2d

r=0 be the canonical k-basis for X1,n. Then end−+
X1,n

(x1,n
1 , x1,n

n2d , 1) does

not factor through any projective Λ-module. Let {x2,n
r }n2d−1

r=0 (resp. {x3,n
r }n2d

r=0)
be the canonical k-basis for X2,n (resp. X3,n). Then, for � ∈ {2, 3},
end++

X�,n
(x�,n

1 , x�,n
n2d−1

, 0) does not factor through any projective Λ-module. This
completes the proof of Lemma 4.1.5. �

Proof of Lemma 4.1.6. Let C be a component of the stable Auslander-Reiten quiver
of Λ containing a uniserial module X of length 4. We need to show that C and
Ω(C) are both of type ZA∞

∞, and C = Ω(C) exactly when d = 3. Moreover, if M
belongs to C∪Ω(C) and has stable endomorphism ring k, we need to show that M
is in the Ω-orbit of X and Ext1Λ(M, M) = k.

There are four uniserial Λ-modules of length 4:

X1 =

1
0
2
0

, Ω2(X1) =

0
2
0
1

, X2 =

2
0
1
0

, Ω2(X2) =

0
1
0
2

.

Let C be the component containing X1. (The case when C contains X2 is treated
similarly.) We have seen in Lemma 4.1.3 that X1 has endomorphism ring k. More-
over, Ω(X1) is uniserial of length 2d−3 with descending radical series (S1, S0, S2, S0,
. . . , S1, S0, S2, S0, S1), and thus Ext1Λ(X1, X1) = HomΛ(Ω(X1), X1) = k.

Using the description of the components of the stable Auslander-Reiten quiver
of Λ as in §7.2, we see that C is of type ZA∞

∞. Moreover, using hooks and cohooks
we can describe the modules M in C not belonging to the Ω-orbit of X1. From
this description it follows that Ω(X1) lies in C, and hence C = Ω(C), if and only if
d = 3. Similar to the proof of Lemma 4.1.5 we then construct for each remaining
M an endomorphism which does not factor through any projective Λ-module. This
completes the proof of Lemma 4.1.6. �

6.3. Components of type ZA∞
∞. We next consider all components of the stable

Auslander-Reiten quiver of type ZA∞
∞. We prove that the only such components
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containing a module with stable endomorphism ring k are precisely those compo-
nents containing a module M with EndΛ(M) = k or EndΛ(Ω(M)) = k.

We use the notation of hooks and cohooks from §7.2. Moreover, if S is a string
of positive length in a ZA∞

∞-component, we use Sh′ (resp. h′S) to denote the
string obtained from S by either adding a hook or subtracting a cohook on the
right side (resp. left side) of S. We also use Sc′ (resp. c′S) to denote the string
obtained from S by either adding a cohook or subtracting a hook on the right side
(resp. left side) of S. This means that near M(S) the stable Auslander-Reiten
component looks like Figure 6.3.1. Note that if S has minimal length in its stable

M(c′S)

������ M(Sh′ )

M(S)

������

������

M(Sc′ )

������
M(h′S)

Figure 6.3.1. The stable Auslander-Reiten component near M(S).

Auslander-Reiten component, then Sh′ = Sh, h′S = hS, Sc′ = Sc and c′S = cS. If
none of the projective Λ-modules is uniserial and S has minimal length, then also
Sh′···h′ = Sh···h, h′···h′S = h···hS, Sc′···c′ = Sc···c and c′···c′S = c···cS. The following
lemma is straightforward.

Lemma 6.3.1. Let Λ = kQ/I be a symmetric special biserial algebra with the
following properties:

(a) the quiver Q contains no double arrows;
(b) for all v1, v2 ∈ Q0 and α ∈ Q1 with s(α) = v1 and e(α) = v2, there exists

τ (α) ∈ Q1 with s(τ (α)) = v2 and e(τ (α)) = v1;
(c) if P is a uniserial projective Λ-module, then P is a string module corre-

sponding to a directed string α1α2 · · ·α�, and

α1α2 · · ·α� = τ (α�)τ (α�−1) · · · τ (α1);

if P is a non-uniserial projective Λ-module, then P corresponds to a relation
p1 = p2 in I for two paths p1 = α1α2 · · ·α�1 and p2 = β1β2 · · ·β�2 in kQ,
and

{α1α2 · · ·α�1 , β1β2 · · ·β�2} = {τ (α�1)τ (α�1−1) · · · τ (α1), τ (β�2)τ (β�2−1) · · · τ (β1)}.
Let S = w1w2 · · ·wn be a string of length n ≥ 1, and define τ (S) = τ (w1)−1τ (w2)−1

· · · τ (wn)−1. Then τ (S) is a string. Moreover, suppose {xr}n
r=0 (resp. {yr}n

r=0) is
the canonical k-basis of M(S) (resp. M(τ (S))) relative to the representative S (resp.
τ (S)). Let ε1, ε2 ∈ {+,−}, and let 0 ≤ u, v, � ≤ n. Define ρ(+) = − and ρ(−) = +.
If endε1 ε2

M(S)(xu, xv, �) is a Λ-endomorphism of M(S), then endρ(ε2) ρ(ε1)
M(τ(S)) (yv, yu, �) is

a Λ-endomorphism of M(τ (S)). Moreover, endε1 ε2
M(S)(xu, xv, �) factors through a

projective Λ-module P if and only if endρ(ε2) ρ(ε1)
M(τ(S)) (yv, yu, �) factors through P .
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We are now able to prove the following result.

Proposition 6.3.2. Let Λ = kQ/I where Q and I are as in §3.1. Then the
components of the stable Auslander-Reiten quiver of type ZA∞

∞ containing a module
with stable endomorphism ring k are precisely the components containing a module
M with EndΛ(M) = k or EndΛ(Ω(M)) = k.

Proof. Let C be a component of type ZA∞
∞ of the stable Auslander-Reiten quiver

of Λ such that C∪Ω(C) contains no simple Λ-module and no uniserial Λ-module of
length 4; i.e. by Lemma 4.1.3, C∪Ω(C) contains no Λ-module with endomorphism
ring k.

Let X be a Λ-module of minimal length in C. In particular, X (or more precisely
the string defining X) cannot start or end in a peak (resp. in a deep). Since P1

and P2 are uniserial, this means that X cannot have any of the following forms:

X = 1
0 · · · , X = 2

0 · · · , X = 1
· · · 0 , X = 2

· · · 0 ,(6.3.1)

X =
0 · · ·

1 , X =
0 · · ·

2 , X =
· · · 0

1 , X =
· · · 0

2 .

Let {zr}�(X)
r=0 be the canonical k-basis of the string module X relative to the chosen

representative.
Suppose first X is uniserial. By (6.3.1), X = M(S) where S is one of the

following strings for 1 ≤ n ≤ 2d−2 − 1:

S1,1,n =
(
γ−1β−1δ−1η−1

)n
γ−1β−1,(6.3.2)

S1,2,n =
(
γ−1β−1δ−1η−1

)n
,

S2,2,n =
(
δ−1η−1γ−1β−1

)n
δ−1η−1,

S2,1,n =
(
δ−1η−1γ−1β−1

)n
.

Note that M(S1,1,0) (resp. M(S2,2,0)) lies in the same component of the Auslander-
Reiten quiver as a uniserial Λ-module of length 4. If i �= j in {1, 2}, then
Ω(M(Si,i,2d−2−2)) lies in the same Auslander-Reiten component as a uniserial Λ-
module of length 4, M(Si,i,2d−2−1) lies in the same Auslander-Reiten component
as Sj , and Ω(M(Si,j,2d−2−1)) lies in the same Auslander-Reiten component as S0.
On the other hand, if n < 2d−2 − 2, then end++

M(Si,i,n)(z0, z4n+2, 4n − 2) does not
factor through a projective Λ-module for i ∈ {1, 2}. Also, if n < 2d−2 − 1, then
end++

M(Si,j,n)(z0, z4n, 4n−4) does not factor through a projective Λ-module for i �= j

in {1, 2}. By considering hooks and cohooks, we see that in both cases, all Λ-
modules in the Auslander-Reiten component containing X have stable endomor-
phism ring of dimension at least 2.

Suppose now X is not uniserial. By Lemma 6.3.1, it is enough to consider X
where

X = 0
1 · · · , or X = 0

2 · · · .

Let (ξ1, ξ2) = (η, β). If X = M(S) where S = Si,i,nξi · · · for i ∈ {1, 2} and
1 ≤ n < 2d−2 − 1, then end++

X (z0, z4n+2, 4n − 2) does not factor through any
projective Λ-module, and the same is true for M(Sh′···h′) and M(Sc′···c′). Similarly,
if X = M(S) where S = Si,j,nξj · · · for i �= j in {1, 2} and 1 ≤ n < 2d−2 − 1, then
end++

X (z0, z4n, 4n − 4) does not factor through any projective Λ-module, and the
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same is true for M(Sh′···h′) and M(Sc′···c′). If X = M(Si,i,2d−2−1ξiCi) where i ∈
{1, 2} and Ci is some string, then X lies in the same Auslander-Reiten component
as M(Ci). Hence X is not of minimal length in C. The two remaining possibilities
for X are

X = M(Si,i,0ξi · · · ) for i ∈ {1, 2}
or

X = M(Si,j,2d−2−1ξj · · · ) for i �= j in {1, 2}.
Let i �= j in {1, 2}. Then Ω(M(Si,j,2d−2−1ξj · · · )) lies in the same Auslander-
Reiten component as a string module of the form M(τ (Si,i,0ξi · · · )), where τ is as
in Lemma 6.3.1. Hence, by Lemma 6.3.1, it is enough to consider X of the form
X = M(Si,i,0ξi · · · ) for i ∈ {1, 2}.

Let i = 1. (The case i = 2 is done similarly.) Since X has minimal length in
the Auslander-Reiten component C, this means X = M(SC), where S is one of the
following strings:

S1,2
n = γ−1β−1(S1,2,n)−1, 1 ≤ n ≤ 2d−2 − 1,(6.3.3)

S2,2
n = γ−1β−1(S2,2,n)−1, 0 ≤ n ≤ 2d−2 − 1,

and C is a string such that the following holds. If C has positive length, then
C = ζ−1 · · · for the appropriate arrow ζ in Q, and if S = S2,2

2d−2−1
, then C cannot

have length 0.
If S = S1,2

n , 1 ≤ n ≤ 2d−2 − 1, then end++
X (z0, z2, 0) does not factor through a

projective Λ-module. The same is true for M((SC)c′···c′) and for M((SC)h′), and,
if n < 2d−2 − 1 or C has positive length, then also for M((SC)h′···h′). If SC = S =
S1,2

2d−2−1
, then

(SC)h′···h′ = S1,2
2d−2−1

ηδγ−1β−1δ−1 · · · .

Thus end++
M((SC)h′···h′ )

(z2d , z2, 2) does not factor through a projective Λ-module.
If S = S2,2

n , 0 ≤ n ≤ 2d−2−2, then end++
X (z0, z2, 0) does not factor through a pro-

jective Λ-module. The same is also true for M((SC)c′···c′) and for M((SC)h′···h′).
Now suppose S = S2,2

2d−2−1
. Since X has minimal length in its Auslander-Reiten

component, C = γ−1β−1C ′ for some string C ′. If C ′ has length 0 or C ′ = δ−1 · · · ,
then end++

X (z2d , z2, 2) does not factor through a projective Λ-module. The same is
true for M((SC)c′···c′), and, if C ′ has positive length, then also for M((SC)h′···h′). If
C ′ has length 0, i.e. SC = S2,2

2d−2−1
γ−1β−1, then (SC)h = (SC)η and (SC)h′···h′ =

(SC)ηδγ−1 · · · . Thus end++
M((SC)h)(z2d , z3, 3) and end++

M((SC)h′···h′ )
(z2d , z4, 4) do not

factor through a projective Λ-module. Now suppose C ′ = η · · · . Then X has the
form X = M(S2,2

2d−2−1
SC1), where S is one of the strings in (6.3.3) and C1 has

the same properties as the properties of C described below in (6.3.3). Hence one
continues using similar arguments as above, and thus concludes that the Auslander-
Reiten components containing any of these X contain no Λ-module with stable
endomorphism ring k. �

6.4. One-tubes. Finally, we consider the components of the stable Auslander-
Reiten quiver which are 1-tubes. We prove that no 1-tube contains any modules
with stable endomorphism ring k. Since for the blocks in question all string modules
lie either in components of type ZA∞

∞ or in 3-tubes, all the modules in 1-tubes are
band modules. We use the description of band modules from §7.1.
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Remark 6.4.1. Let Λ be a special biserial algebra. It follows from [25] that if B is
a band, λ ∈ k−{0} and n ≥ 2 is an integer, then EndΛ(M(B, λ, n)) has dimension
at least 2. To be more precise, the endomorphisms coming from the circular quiver
associated to the band B are parametrized by upper triangular n×n matrices with
equal entries along each diagonal, and these endomorphisms cannot factor through
a projective Λ-module. So if n ≥ 2, then the k-dimension of the space spanned by
these endomorphisms is n ≥ 2.

Definition 6.4.2. Let Λ = kQ/I be a special biserial algebra. Let B be a band
for Λ, λ ∈ k − {0} and let MB,λ = M(B, λ, 1). Suppose S is a string such that

(i) B ∼r ST1 with T1 = ξ−1
1 T ′

1ξ2, where T1, T
′
1 are strings and ξ1, ξ2 are arrows

in Q; and
(ii) B ∼r ST2 with T2 = ζ1T

′
2ζ

−1
2 , where T2, T

′
2 are strings and ζ1, ζ2 are arrows

in Q.
Then by [25] there exists a non-zero endomorphism of MB,λ which factors through
M(S). We will say such an endomorphism is of string type S. Note that there may
be several choices of T1 (resp. T2) in (i) (resp. (ii)). In other words, there may
be several k-linearly independent endomorphisms of string type S. By [25], every
endomorphism of MB,λ is a k-linear combination of the identity morphism and of
endomorphisms of string type S for suitable choices of strings S satisfying (i) and
(ii).

Definition 6.4.3. Let Λ = kQ/I be a special biserial algebra, and let B be a band
for Λ.

(i) We call a string C a substring of B if B ∼r CC ′ for some string C ′.
(ii) A substring S of B is called a top-socle piece of B if

(a) S = α−1
� · · ·α−1

2 α−1
1 for � ≥ 1 and arrows α1, α2, . . . , α� in Q, and

(b) B ∼r ST for some string T , where T = ξT ′ζ and ξ, ζ are arrows in Q.
Note that B ∼r C0C

−1
1 C2C

−1
3 · · ·C−1

s , where s ≥ 1 is odd and C0, C1, . . . ,
Cs are top-socle pieces of B.

(iii) If S is a top-socle piece of B and E is a simple Λ-module which is isomorphic
to the top (resp. socle) of M(S), we also say that S has top (resp. socle)
isomorphic to E.

In the proof of the following proposition, we will often use the equality sign
instead of the more precise ∼r.

Proposition 6.4.4. Let Λ = kQ/I, where Q and I are as in §3.1. Then each
module M which lies in a component of the stable Auslander-Reiten quiver which
is a 1-tube satisfies dimk EndΛ(M) ≥ 2.

Proof. Let B be a band for Λ such that possibly EndΛ(M(B, λ, n)) = k. By Remark
6.4.1, we only need to consider MB,λ = M(B, λ, 1) for λ ∈ k − {0}.

It follows from the shape of the quiver Q that the only top-socle pieces that can
occur in B must have top and socle isomorphic to S0. This means they have the
form, using the notation from (6.3.2):

Si,i,n for 0 ≤ n ≤ 2d−2−1 and Si,j,n for 1 ≤n≤ 2d−2−1, where i �=j in {1, 2}.
Now let i �= j in {1, 2}. If Si,i,n for 0 < n < 2d−2 − 1 (resp. Si,j,n for 1 < n <
2d−2 − 1) is a top-socle piece of B, then MB,λ has an endomorphism of string type
Si,i,n−1 (resp. of string type Si,j,n−1) which does not factor through a projective
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module. This implies that the only top-socle pieces that can occur in B are (again
using the notation from (6.3.2))

(6.4.1) Si,i,0, Si,i,2d−2−1 and Si,j,1, Si,j,2d−2−1, where i �= j in {1, 2}.

Let i �= j in {1, 2}, and suppose Si,j,1 (resp. Si,j,2d−2−1) is a top-socle piece
of B. If Sj,i,1 is also a top-socle piece of B, then MB,λ has an endomorphism of
string type Sj,j,0 which does not factor through a projective module. On the other
hand, if Sj,i,2d−2−1 is also a top-socle piece of B, then MB,λ has an endomorphism
of string type Sj,j,0 (resp. Sj,j,2d−2−2) which does not factor through a projective
module. This means that if Si,j,1 (resp. Si,j,2d−2−1) is a top-socle piece of B, then
neither Sj,i,1 nor Sj,i,2d−2−1 can be a top-socle piece of B.

We claim that this makes it impossible for either Si,j,1 or Si,j,2d−2−1 to occur
as a top-socle piece of B. We demonstrate this for the case (i, j) = (1, 2). Let � ∈
{1, 2d−2 − 1}, and suppose Si,j,� is a top-socle piece of B. This means B = S1,2,�C

for some string C = C−1
1 C2C

−1
3 · · ·C−1

s , where s ≥ 1 is odd and C1, C2, . . . , Cs are
top-socle pieces of B. But then Cu must be of the form S1,1,1 or S1,1,2d−2−1 for odd
u, and of the form S2,2,1 or S2,2,2d−2−1 for even u. In particular, Cs is of the form
S1,1,1 or S1,1,2d−2−1. But this contradicts that B is a band, since C−1

s S1,2,� is not
a valid word.

Hence, by (6.4.1), the only top-socle pieces that can occur in B are

(6.4.2) Si,i,0, Si,i,2d−2−1 for i ∈ {1, 2}.

Let i �= j in {1, 2}, and suppose Si,i,0 is a top-socle piece of B. Then B = Si,i,0C

for some string C = C−1
1 C2C

−1
3 · · ·C−1

s , where s ≥ 1 is odd and C1, C2, . . . , Cs are
top-socle pieces of B.

We claim that C1 and Cs must both be Sj,j,2d−2−1. This can be shown as
follows. Suppose first Cs = Sj,j,0. Then it follows that Cs−1 = Si,i,2d−2−1 and
C1 = Sj,j,2d−2−1, since otherwise MB,λ has an endomorphism of string type 10 (i.e.
the string of length 0 corresponding to the vertex 0) which does not factor through
a projective module. But then, to ensure that B is a band, one of two things must
be true: Either there is an odd u0 with C−1

u0
Cu0+1 = S−1

j,j,2d−2−1
Si,i,2d−2−1, in which

case MB,λ has an endomorphism of string type S−1
j,j,0Si,i,0 which does not factor

through a projective module, or there is an odd u0 with Cu0−1C
−1
u0

= Si,i,0S
−1
j,j,0,

in which case Cu0+1 = Si,i,2d−2−1 which means MB,λ has an endomorphism of
string type Si,i,0S

−1
j,j,0Si,i,0 which does not factor through a projective module.

Hence we get a contradiction, which means Cs = Sj,j,2d−2−1. The same argu-
ment shows that if u < s is odd, then at least one of Cu and Cu+1 must be in
{S1,1,2d−2−1, S2,2,2d−2−1}. Suppose now that C1 = Sj,j,0. Then we must have
C2 = Si,i,2d−2−1. Moreover, there must exist an odd u0 such that Cu0−1C

−1
u0

=
Si,i,2d−2−1S

−1
j,j,2d−2−1

. But this means that MB,λ has an endomorphism of string
type Si,i,0S

−1
j,j,0 which does not factor through a projective module. Thus C1 and

Cs are both Sj,j,2d−2−1.
Since B cannot be the power of a smaller word, we see that if s > 1, then MB,λ

has an endomorphism of string type Si,i,0S
−1
j,j,2d−2−1

Si,i,0 which does not factor
through a projective module. On the other hand, if s = 1, then B = Si,i,0S

−1
j,j,2d−2−1

,
and MB,λ has an endomorphism of string type 10 (i.e. the string of length 0
corresponding to the vertex 0) which does not factor through a projective module.
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Hence neither S1,1,0 nor S2,2,0 is a top-socle piece of B. Thus the only possible
band is B = S1,1,2d−2−1S

−1
2,2,2d−2−1

. But then MB,λ has an endomorphism of string
type S1,2,2d−2−1 which does not factor through a projective module. So in all cases,
EndΛ(MB,λ) has k-dimension at least 2, which completes the proof of Proposition
6.4.4. �

7. Background: Special biserial algebras

In this section, we give a short introduction to special biserial algebras. For
more background material, we refer to [12]. Let k be an algebraically closed field
of characteristic p > 0, let Q be a finite quiver and let I be an admissible ideal in
the path algebra kQ.

Definition 7.1. A finite dimensional basic k-algebra Λ = kQ/I is called special
biserial if the following conditions are satisfied:

(i) Any vertex of Q is the starting point (resp. the end point) of at most two
arrows.

(ii) For a given arrow β in Q, there is at most one arrow γ with βγ �∈ I, and
there is at most one arrow α with αβ �∈ I.

If additionally I is generated by paths, Λ is called a string algebra.

If Λ is a special biserial algebra and P is a full set of representatives of the
projective indecomposable Λ-modules which are also injective and not uniserial,
then Λ̄ = Λ/(

⊕
P∈P soc(P )) is a string algebra. Furthermore, the indecomposable

Λ̄-modules are exactly the indecomposable Λ-modules which are not isomorphic to
any P ∈ P.

7.1. Indecomposable modules for string algebras. Let Λ = kQ/I be a ba-
sic string algebra. Then all indecomposable Λ-modules are either string or band
modules (see e.g. [12, §3]). The definitions are as follows.

Given an arrow β in Q with starting point s(β) and end point e(β), denote
by β−1 a formal inverse of β. In particular, s(β−1) = e(β), e(β−1) = s(β), and
(β−1)−1 = β. A word w is a sequence w1 · · ·wn, where wi is either an arrow or a
formal inverse such that s(wi) = e(wi+1) for 1 ≤ i ≤ n − 1. Define s(w) = s(wn),
e(w) = e(w1) and w−1 = w−1

n · · ·w−1
1 . For each vertex u in Q there exists an empty

word 1u of length 0 with e(1u) = s(1u) = u and (1u)−1 = 1u. Denote the set of all
words by W , and the set of all non-empty words w with e(w) = s(w) by Wr. In
the following, Greek letters inside words always denote arrows.

7.1.1. Strings and string modules. Let ∼s be the equivalence relation on W with
w ∼s w′ if and only if w = w′ or w−1 = w′. Then strings are representatives w ∈ W
of the equivalence classes under ∼s with the following property: Either w = 1u or
w = w1 · · ·wn, where wi �= w−1

i+1 for 1 ≤ i ≤ n−1 and no subword of w or its formal
inverse belongs to I.

Let C = w1 · · ·wn be a string of length n and let QC be the linear quiver

QC = ·
w1 · ··· ·

wn·,

where ·
wi · = · ·

β�� if wi = β is an arrow, and ·
wi · = ·

β �� · if wi = β−1 is a formal
inverse. Then the representation of QC , which assigns to each vertex the vector
space k and to each arrow the identity map, defines an indecomposable Λ-module,
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called the string module M(C) corresponding to the string C. More precisely, there
is a k-basis {z0, z1, . . . , zn} of M(C) such that the action of Λ on M(C) is given
by the representation ϕC : Λ → Mat(n + 1, k) which is defined as follows. Let
v(i) = e(wi+1) for 0 ≤ i ≤ n− 1 and v(n) = s(wn). Then for each vertex u and for
each arrow α in Q

ϕC(u)(zi) =
{

zi , if v(i) = u
0 , else

}
and

ϕC(α)(zi) =

⎧⎨
⎩

zi−1 , if wi = α
zi+1 , if wi+1 = α−1

0 , else

⎫⎬
⎭ .

We will call ϕC the canonical representation and {z0, z1, . . . , zn} the canonical k-
basis for M(C) relative to the representative C. Note that M(C) ∼= M(C−1).

The string modules M(1u), with u a vertex of Q, correspond bijectively to the
isomorphism classes of the simple Λ-modules. We say a string C = w1 · · ·wn is
directed if all wi are arrows. For each vertex u of Q, there exist at most two
directed strings of maximal length starting in u. Let these be C1 and C2. Then the
projective indecomposable Λ-module P (u) is the string module M(C1C

−1
2 ). Dually,

the injective indecomposable module E(u) is the string module M(D−1
1 D2), where

D1 and D2 are the directed strings of maximal length ending in u.

7.1.2. Bands and band modules. Let w = w1 · · ·wn ∈ Wr. Then, for 0 ≤ i ≤ n− 1,
the i-th rotation of w is defined to be the word ρi(w) = wi+1 · · ·wnw1 · · ·wi. Let
∼r be the equivalence relation on Wr such that w ∼r w′ if and only if w = ρi(w′)
for some i or w−1 = ρj(w′) for some j. Then bands are representatives w ∈ Wr of
the equivalence classes under ∼r with the following property: w = w1 · · ·wn, n ≥ 1,
with wi �= w−1

i+1 and wn �= w−1
1 , such that w is not a power of a smaller word, and,

for all positive integers m, no subword of wm or its formal inverse belongs to I.
Let B = w1 · · ·wn be a band of length n. We may assume that w1 is an arrow,

by rotating and possibly inverting. Let Qc
B be the circular quiver

Qc
B =

·
w1 ·

·

wn

·

w2

,

where ·
wi · = · ·

β
�� points counterclockwise if wi = β is an arrow, and

·
wi · = ·

β
�� · points clockwise if wi = β−1 is a formal inverse. Let m > 0

be an integer and λ ∈ k∗. Then the representation of Qc
B , which assigns to each

vertex the vector space km, to w1 the indecomposable Jordan matrix Jm(λ), and
to wi, 2 ≤ i ≤ n, the identity map, defines an indecomposable Λ-module, called the
band module M(B, λ, m) corresponding to B, λ and m. Note that for all i, j

M(B, λ, m) ∼= M(ρi(B), λ, m) ∼= M(ρj(B)−1, λ, m).

7.2. Auslander-Reiten components. Let Λ = kQ/I be a basic string algebra.
Then in each component of the Auslander-Reiten quiver of Λ there are either only
string modules or only band modules. The band modules all lie in 1-tubes. The
string modules can lie in periodic components or in non-periodic components. We
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now describe the irreducible morphisms between string modules using hooks and
cohooks. Let S be a string.

We say that S starts on a peak provided there is no arrow β with Sβ a string,
and that S starts in a deep provided there is no arrow γ with Sγ−1 a string. Dually,
we say that S ends on a peak provided there is no arrow β with β−1S a string, and
that S ends in a deep provided there is no arrow γ with γS a string.

If S does not start on a peak, there is a unique arrow β and a unique maximal
directed string M such that Sh = SβM−1 starts in a deep. We say Sh is obtained
from S by adding a hook on the right side. Dually, if S does not end on a peak,
there is a unique arrow β and a unique directed string M such that hS = Mβ−1S
ends in a deep. We say hS is obtained from S by adding a hook on the left side.

If S does not start in a deep, there is a unique arrow γ and a unique maximal
directed string N such that Sc = Sγ−1N starts on a peak. We say Sc is obtained
from S by adding a cohook on the right side. Dually, if S does not end in a deep,
there is a unique arrow γ and a unique directed string N such that cS = N−1γS
ends on a peak. We say cS is obtained from S by adding a cohook on the left side.

All irreducible morphisms between string modules are either canonical injections

M(S) → M(Sh) or M(S) → M(hS)

or canonical projections

M(Sc) → M(S) or M(cS) → M(S).

If Λ is a basic special biserial algebra which is self-injective, then Λ/soc(Λ) is
a string algebra. Moreover, the stable Auslander-Reiten quiver of Λ is equal to
the Auslander-Reiten quiver of Λ/soc(Λ). In case Λ is Morita equivalent to a block
with dihedral defect groups, the periodic components containing string modules are
either 1-tubes or 3-tubes, and the non-periodic components all have type ZA∞

∞.
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