## On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions

HTML articles powered by AMS MathViewer

- by Yik-Man Chiang and Shao-Ji Feng PDF
- Trans. Amer. Math. Soc.
**361**(2009), 3767-3791 Request permission

## Abstract:

A crucial ingredient in the recent discovery by Ablowitz, Halburd, Herbst and Korhonen (2000, 2007) that a connection exists between discrete Painlevé equations and (finite order) Nevanlinna theory is an estimate of the integrated average of $\log ^+|f(z+1)/f(z)|$ on $|z|=r$. We obtained essentially the same estimate in our previous paper (2008) independent of Halburd et al. (2006). We continue our study in this paper by establishing complete asymptotic relations amongst the logarithmic differences, difference quotients and logarithmic derivatives for finite order meromorphic functions. In addition to the potential applications of our new estimates in integrable systems, they are also of independent interest. In particular, our findings show that there are marked differences between the growth of meromorphic functions with Nevanlinna order less than and greater than one. We have established a “difference” analogue of the classical Wiman-Valiron type estimates for meromorphic functions with order less than one, which allow us to prove that all entire solutions of linear difference equations (with polynomial coefficients) of order less than one must have positive rational order of growth. We have also established that any entire solution to a first order algebraic difference equation (with polynomial coefficients) must have a positive order of growth, which is a “difference” analogue of a classical result of Pólya.## References

- M. J. Ablowitz and P. A. Clarkson,
*Solitons, nonlinear evolution equations and inverse scattering*, London Mathematical Society Lecture Note Series, vol. 149, Cambridge University Press, Cambridge, 1991. MR**1149378**, DOI 10.1017/CBO9780511623998 - M. J. Ablowitz, R. Halburd, and B. Herbst,
*On the extension of the Painlevé property to difference equations*, Nonlinearity**13**(2000), no. 3, 889–905. MR**1759006**, DOI 10.1088/0951-7715/13/3/321 - Walter Bergweiler and Walter K. Hayman,
*Zeros of solutions of a functional equation*, Comput. Methods Funct. Theory**3**(2003), no. 1-2, [On table of contents: 2004], 55–78. MR**2082005**, DOI 10.1007/BF03321025 - Walter Bergweiler, Katsuya Ishizaki, and Niro Yanagihara,
*Meromorphic solutions of some functional equations*, Methods Appl. Anal.**5**(1998), no. 3, 248–258. MR**1659151**, DOI 10.4310/MAA.1998.v5.n3.a2 - Walter Bergweiler, Katsuya Ishizaki, and Niro Yanagihara,
*Growth of meromorphic solutions of some functional equations. I*, Aequationes Math.**63**(2002), no. 1-2, 140–151. MR**1891282**, DOI 10.1007/s00010-002-8012-x - Walter Bergweiler and J. K. Langley,
*Zeros of differences of meromorphic functions*, Math. Proc. Cambridge Philos. Soc.**142**(2007), no. 1, 133–147. MR**2296397**, DOI 10.1017/S0305004106009777 - Henri Cartan,
*Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications*, Ann. Sci. École Norm. Sup. (3)**45**(1928), 255–346 (French). MR**1509288** - Yik-Man Chiang and Shao-Ji Feng,
*On the Nevanlinna characteristic of $f(z+\eta )$ and difference equations in the complex plane*, Ramanujan J.**16**(2008), no. 1, 105–129. MR**2407244**, DOI 10.1007/s11139-007-9101-1 - Yik-Man Chiang and Simon N. M. Ruijsenaars,
*On the Nevanlinna order of meromorphic solutions to linear analytic difference equations*, Stud. Appl. Math.**116**(2006), no. 3, 257–287. MR**2220338**, DOI 10.1111/j.1467-9590.2006.00343.x - B. Grammaticos, A. Ramani, and V. Papageorgiou,
*Do integrable mappings have the Painlevé property?*, Phys. Rev. Lett.**67**(1991), no. 14, 1825–1828. MR**1125950**, DOI 10.1103/PhysRevLett.67.1825 - Valerii I. Gromak, Ilpo Laine, and Shun Shimomura,
*Painlevé differential equations in the complex plane*, De Gruyter Studies in Mathematics, vol. 28, Walter de Gruyter & Co., Berlin, 2002. MR**1960811**, DOI 10.1515/9783110198096 - Gary G. Gundersen,
*Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates*, J. London Math. Soc. (2)**37**(1988), no. 1, 88–104. MR**921748**, DOI 10.1112/jlms/s2-37.121.88 - Gary G. Gundersen, Enid M. Steinbart, and Shupei Wang,
*The possible orders of solutions of linear differential equations with polynomial coefficients*, Trans. Amer. Math. Soc.**350**(1998), no. 3, 1225–1247. MR**1451603**, DOI 10.1090/S0002-9947-98-02080-7 - R. G. Halburd and R. J. Korhonen,
*Difference analogue of the lemma on the logarithmic derivative with applications to difference equations*, J. Math. Anal. Appl.**314**(2006), no. 2, 477–487. MR**2185244**, DOI 10.1016/j.jmaa.2005.04.010 - R. G. Halburd and R. J. Korhonen,
*Finite-order meromorphic solutions and the discrete Painlevé equations*, Proc. Lond. Math. Soc. (3)**94**(2007), no. 2, 443–474. MR**2308234**, DOI 10.1112/plms/pdl012 - R. G. Halburd and R. J. Korhonen,
*Nevanlinna theory for the difference operator*, Ann. Acad. Sci. Fenn. Math.**31**(2006), no. 2, 463–478. MR**2248826** - R. G. Halburd and R. J. Korhonen,
*Existence of finite-order meromorphic solutions as a detector of integrability in difference equations*, Phys. D**218**(2006), no. 2, 191–203. MR**2238752**, DOI 10.1016/j.physd.2006.05.005 - R. G. Halburd and R. J. Korhonen,
*Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations*, J. Phys. A**40**(2007), no. 6, R1–R38. MR**2343636**, DOI 10.1088/1751-8113/40/6/R01 - W. K. Hayman,
*Meromorphic functions*, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR**0164038** - W. K. Hayman,
*The local growth of power series: a survey of the Wiman-Valiron method*, Canad. Math. Bull.**17**(1974), no. 3, 317–358. MR**385095**, DOI 10.4153/CMB-1974-064-0 - W. K. Hayman,
*On the zeros of a $q$-Bessel function*, Complex analysis and dynamical systems II, Contemp. Math., vol. 382, Amer. Math. Soc., Providence, RI, 2005, pp. 205–216. MR**2175889**, DOI 10.1090/conm/382/07060 -
*Y. He and X. Xiao*, Algebroid Functions and Ordinary Differential Equations, Beijing Sci. Press, 1988 (Chinese). - Janne Heittokangas, Risto Korhonen, Ilpo Laine, Jarkko Rieppo, and Kazuya Tohge,
*Complex difference equations of Malmquist type*, Comput. Methods Funct. Theory**1**(2001), no. 1, [On table of contents: 2002], 27–39. MR**1931600**, DOI 10.1007/BF03320974 - Janne Heittokangas, Ilpo Laine, Jarkko Rieppo, and Degui Yang,
*Meromorphic solutions of some linear functional equations*, Aequationes Math.**60**(2000), no. 1-2, 148–166. MR**1777900**, DOI 10.1007/s000100050143 - Einar Hille,
*Ordinary differential equations in the complex domain*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR**0499382** - K. Ishizaki and N. Yanagihara,
*Wiman-Valiron method for difference equations*, Nagoya Math. J.**175**(2004), 75–102. MR**2085312**, DOI 10.1017/S0027763000008916 - Ilpo Laine,
*Nevanlinna theory and complex differential equations*, De Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993. MR**1207139**, DOI 10.1515/9783110863147 -
*L. M. Milne-Thomson*, The Calculus of Finite Differences, MacMillian & Co., London, 1933. - B. Ja. Levin,
*Distribution of zeros of entire functions*, Revised edition, Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman. MR**589888** - Rolf Nevanlinna,
*Analytic functions*, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR**0279280** - Georg Pólya,
*Zur Untersuchung der Grössenordnung ganzer Funktionen, die einer Differentialgleichung genügen*, Acta Math.**42**(1920), no. 1, 309–316 (German). MR**1555169**, DOI 10.1007/BF02404412 - G. Pólya and G. Szegő,
*Problems and theorems in analysis. Vol. II*, Revised and enlarged translation by C. E. Billigheimer of the fourth German edition, Die Grundlehren der mathematischen Wissenschaften, Band 216, Springer-Verlag, New York-Heidelberg, 1976. Theory of functions, zeros, polynomials, determinants, number theory, geometry. MR**0396134** - A. Ramani, B. Grammaticos, and J. Hietarinta,
*Discrete versions of the Painlevé equations*, Phys. Rev. Lett.**67**(1991), no. 14, 1829–1832. MR**1125951**, DOI 10.1103/PhysRevLett.67.1829 - A. Ramani, B. Grammaticos, T. Tamizhmani, and K. M. Tamizhmani,
*The road to the discrete analogue of the Painlevé property: Nevanlinna meets singularity confinement*, Comput. Math. Appl.**45**(2003), no. 6-9, 1001–1012. Advances in difference equations, IV. MR**2000573**, DOI 10.1016/S0898-1221(03)00076-2 - Jean-Pierre Ramis,
*About the growth of entire functions solutions of linear algebraic $q$-difference equations*, Ann. Fac. Sci. Toulouse Math. (6)**1**(1992), no. 1, 53–94 (English, with English and French summaries). MR**1191729** - S. N. M. Ruijsenaars,
*First order analytic difference equations and integrable quantum systems*, J. Math. Phys.**38**(1997), no. 2, 1069–1146. MR**1434226**, DOI 10.1063/1.531809 -
*J. M. Whittaker*, Interpolatory Function Theory, Cambridge Univ. Press, Cambridge, 1935. - E. T. Whittaker and G. N. Watson,
*A course of modern analysis*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR**1424469**, DOI 10.1017/CBO9780511608759 -
*G. Valiron*, Lectures on the Theory of Integral Functions, Chelsea Publ. Co., 1949.

## Additional Information

**Yik-Man Chiang**- Affiliation: Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
- Email: machiang@ust.hk
**Shao-Ji Feng**- Affiliation: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China
- Email: fsj@amss.ac.cn
- Received by editor(s): January 5, 2007
- Received by editor(s) in revised form: July 25, 2007
- Published electronically: February 10, 2009
- Additional Notes: This research was supported in part by the Research Grants Council of the Hong Kong Special Administrative Region, China (HKUST6135/01P and 600806). The second author was also partially supported by the National Natural Science Foundation of China (Grant No. 10501044) and by the HKUST PDF Matching Fund.

The second author thanks the Hong Kong University of Science and Technology for its hospitality during his visit from August 2004 to March 2005

Many main results in this paper were presented in the “Computational Methods and Function Theory” meeting held in Joensuu, Finland, June 13–17, 2005. - © Copyright 2009 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**361**(2009), 3767-3791 - MSC (2000): Primary 30D30, 30D35, 39A05; Secondary 46E25, 20C20
- DOI: https://doi.org/10.1090/S0002-9947-09-04663-7
- MathSciNet review: 2491899

Dedicated: Dedicated to the eightieth birthday of Walter K. Hayman