
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 361, Number 8, August 2009, Pages 4027–4044
S 0002-9947(09)04562-0
Article electronically published on March 20, 2009

EXISTENCE OF TRAVELING DOMAIN SOLUTIONS
FOR A TWO-DIMENSIONAL MOVING BOUNDARY PROBLEM

Y. S. CHOI AND ROGER LUI

Abstract. In this paper we prove the existence of a traveling domain solution
for a two-dimensional moving boundary problem. Specifically, we prove the
existence of a domain that travels to the right at a constant speed k and a
function b which solves a porous medium type equation in the domain with
constant Dirichlet boundary condition. The proof is by Schaefer’s fixed point
theorem. The result may be viewed as an extension of the existence of traveling
cell solutions of a one-dimensional cell motility model proved by the authors
and Juliet Lee (2004).

1. Introduction

Suppose u satisfies a parabolic partial differential equation (PDE) in a bounded
domain in R2 that moves in time. Let the domain be denoted by Ωt at time t
and suppose its boundary is given by the zero level curve of a function ψ, i.e.
(x, y) ∈ ∂Ωt if and only if ψ(x, y, t) = 0. Frequently, ψ is chosen to be a distance
function with Ωt = {(x, y) |ψ(x, y, t) < 0}. It is well known that ψ satisfies a
Hamilton-Jacobi type equation ψt + Vn |∇ψ| = 0, where Vn is the speed of ∂Ωt in
the outward normal direction n. The function Vn depends on the properties of the
domain as well as u or its first derivatives. The moving boundary problem (MBP)
can be stated as follows: given Vn and T > 0, find u and the zero level curve of
ψ such that u satisfies the parabolic PDE with prescribed boundary conditions in
Ωt × [0, T ) and ψ satisfies the above Hamilton-Jacobi type equation in R2 × [0, T ).

The mathematical problem studied in this paper arises from extending a one-
dimensional cell motility problem by Mogilner and Verzi [11] to two dimensions.
Details of this extension will be explained later in this section. The resulting PDE
is of the form ut = ∆um − u, m ≥ 1, with boundary condition u = u0 on ∂Ωt.
The question addressed here is under what conditions on Vn does this MBP possess
a traveling domain solution that moves to the right at a constant speed k. In
particular, we look for a pair of functions ũ(x, y), ψ̃(x, y) and a constant k such
that u(x, y, t) = ũ(x − kt, y) and ψ̃(x − kt, y) satisfy the MBP. Carrying out the
differentiation, ũ satisfies the equation ∆ũm + kũx − ũ = 0 in the domain Ω, and
ũ = u0 on ∂Ω where ∂Ω is the zero level curve of the function ψ that satisfies the
equation −kψ̃x+Vn|∇ψ̃| = 0. If ∂Ω is smooth, then one can define the normal angle
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φ on the boundary as the angle between n and i = (1, 0). Then n = (cosφ, sin φ) =
∇ψ̃/|∇ψ̃| since ψ̃ = 0 on ∂Ω. Hence finding ψ̃ is equivalent to finding a domain Ω
that satisfies the relation k cos φ = Vn on the boundary.

The purpose of this paper is to prove the existence of a traveling domain solution
of the above MBP when Vn has the form given by the right hand side of (1.1)(c)
below. The precise result is formulated in the following theorem.

Theorem 1.1. Let m ≥ 1 and let Vd, b0 be positive. There exists a C2 convex
domain Ω ⊂ R2 symmetric about the x-axis and centered at the origin, a positive
function b ∈ C 2,α(Ω) and a constant k > 0, such that

(1.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) ∆bm + kbx − b = 0 in Ω,

(b) b = b0 on ∂Ω,

(c) k cos φ = Vp(φ) − g∗(φ) on ∂Ω.

In (1.1)(c), g∗ is a C1 function defined on [0, π] such that 0 ≤ g∗(φ) ≤ |∇b|(φ) on
[0, π]. Its precise definition is given in Remark 1 below. Also,

(1.2) Vp(φ) =
(

1
s2
0

− Vd

2

)
+

(
1
s2
0

+
Vd

2

)
cos φ − dφ

ds
,

s0 = 1
2 |∂Ω|, and s is arc-length measured counter clockwise from the point F on ∂Ω

(see Figure 1).
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Figure 1. Front and rear of a domain Ω.

The paper is rather technical, so we begin with some general remarks which will
help the readers understand our ideas and proofs.

Remark 1. We first explain how g∗ ∈ C1[0, π] is constructed from a given g ∈
C[0, π], g ≥ 0. The function g∗ should be thought of as a regularization of g. The
reason why we need to use g∗ instead of g(φ) = |∇b|(φ) in (1.1)(c) will be explained
at the end of §3.

Let {Ii = (ai, bi), i = 1, . . . , N} be a covering of the interval [0, π] and let
{ξi ∈ C∞(R), i = 1, 2, . . . , N} be a partition of unity subordinate to {Ii}N

i=1; i.e.
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ξi has compact support in Ii and
∑N

i=1 ξi(φ) = 1 for φ ∈ [0, π]. Define

(1.3) g∗(φ) =
N∑

i=1

ξi(φ) min
ψ∈Ii

g(ψ) .

For any φ ∈ [0, π], let Jφ = {i ∈ {1, . . . , N} | φ ∈ Ii}. Then since ξj(φ) = 0 if
j /∈ Jφ, we have

(1.4) g∗(φ) =
∑
i∈Jφ

ξi(φ) min
ψ∈Ii

g(ψ) ≤
∑
i∈Jφ

ξi(φ) g(φ) = g(φ) .

From (1.3), it is clear that (λg)∗ = λg∗ for 0 ≤ λ ≤ 1.

Lemma 1.1. Let gn → g in C[0, π]. Then g∗n → g∗ in Cj [0, π] for any nonnegative
integer j.

Proof. Since the ξi’s are C∞ functions, it suffices to show that minψ∈Ii
gn(ψ) →

minψ∈Ii
g(ψ) as n → ∞ for each i = 1, 2, . . . , N . Fix Ii and let xn, x0 ∈ Ii be such

that
gn(xn) = min

ψ∈Ii

gn(ψ) and g(x0) = min
ψ∈Ii

g(ψ) .

Then g(x0) − gn(xn) ≤ g(xn) − gn(xn) ≤ ‖g − gn‖C[0,π] and gn(xn) − g(x0) ≤
gn(x0) − g(x0) ≤ ‖g − gn‖C[0,π] . Therefore, |g(x0) − gn(xn)| ≤ ‖g − gn‖C[0,π]. The
proof of the lemma is complete. �

We further remark that if g ∈ C[0, π], then g∗ → g in C[0, π] as the maximum
size of the covering max1≤i≤N |Ii| → 0. Thus the solution to our problem can
be a good approximation to the traveling domain solution, if it exists, when g∗ is
replaced by g in (1.1)(c).

Remark 2. With respect to the moving coordinates, Ω will appear as stationary
and has the following properties: (i) ∂Ω ∈ C2, (ii) Ω is convex, (iii) Ω is symmetric
about the x-axis, (iv) the origin bisects the line RF (see Figure 1). Therefore, the
lines tangent to Ω at F and R must be vertical; i.e. φ = 0 at F and φ = π at
R. Note that for a C2 domain, dφ/ds = κ is the curvature of its boundary and a
domain is convex if and only if κ ≥ 0.

Remark 3. The proof of Theorem 1.1 is via Schaefer’s fixed point theorem (see
Theorem 5.1). Loosely speaking, the idea is that we start with a positive continuous
function g defined on [0, π] which represents a guess of |∇b|(φ) along the upper half
of ∂Ω. We define g∗ from g according to Remark 1 above and use equation (1.1)(c)
to recover k and Ω. This step is denoted by the map T1. Next we solve (1.1)(a)
and (b) with the k and Ω just found and obtain |∇b|(s). If Ω is strictly convex,
then we can identify s with φ and define g̃(φ) = |∇b|(s(φ)). This step is denoted
by the map T2. Let T = T2 ◦ T1. We then show that T has a fixed point which is
then the traveling domain solution to our MBP.

We now explain the connection between our 2D model and the 1D cell motility
model of Mogilner and Verzi. In [11], Mogilner and Verzi proposed a model to
describe the one-dimensional crawling motion of a nematode sperm cell. They
assumed that the cytoskeletal filaments inside the cell are bundled together near
the front of the cell to push the front forward with a speed Vp and depolymerize
near the rear to pull the cell body forward with a speed Vd. Moreover the elasticity
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of the bundled filaments will generate contractile forces throughout the cell. Let
the length density of the bundled filaments be denoted by b. Then it is implied
by the Mogilner and Verzi model that b2

xx + kbx − b = 0 is the governing traveling
domain equation in 1D, where k is the traveling speed. For a 2D model, σ = (σi j)
is a tensor (2 × 2 symmetric matrix). Suppose we assume that stress is isotropic
so that σ = θI, where I is the identity matrix and the scalar function θ depends
on the densities of various proteins inside the cell. Then the traveling domain
equation (1.1)(a) is a simple generalization of the 1D case. Similarly the boundary
conditions can be generalized. In particular zero stress on the cell boundary leads
to b = b0 and the normal speed at the boundary is given by Vn = Vp − |∇b|, where
|∇b| is the retraction speed toward the cell center due to the contractile force of
the filaments. In the formula (1.2) for Vp, we have added the term −dφ/ds which
represents membrane tension. Therefore, the equations we study in this paper may
be considered as a 2D cell motility model assuming a special form of the stress
tensor.

We close this section with some references. The literature on traveling wave
solutions (see [14], [9]) and moving boundary problems is huge, but we are unable
to find any work similar to what we did in this paper. For example in [3] Brazhnik
and Tyson studied the existence of traveling wave solutions of Fisher’s equation in
R2 and in [2] Berstycki and Nirenberg gave a complete study of the existence of
traveling front solutions of the equation ut = ∆u − α(y)ux + f(u) in a cylinder in
R × ω where ω is a bounded smooth domain in Rn−1. However the domains are
fixed in both papers. On the other hand, what we called moving boundary problems
often come under different names depending on the applications (e.g. gas bubble
rising in a liquid) but almost all of them are two-phase flow, and traveling waves may
not exist or may be called something else in these applications. A good example is
the existence of finger solutions for the Hele-Shaw equation [13]. There, the domain
is a strip Ω = {(x, y) | − ∞ < x < ∞,−L < y < L}, and there is a free interface
in this domain that separates two immiscible fluids. The fluid pressure satisfies
the Laplace equation in Ω except on the free interface, and boundary and jump
conditions that are related to the curvature are imposed on the interface. There
are also many other areas of applications such as flame propagation, dendrites, etc.
The book by Pierce Pelcé [12] is a good source of these types of problems. In the
case of 1D, our earlier papers (see [4], [5], [6]) established the well posedness of
both the MBP and the traveling domain problem. The linearized stability of the
traveling domain solution has also been studied in [7].

The organization of this paper is as follows. In §2, we show how to construct the
domain Ω using equation (1.1)(c). Recognizing the form of Vn and using (1.1)(c)
to recover the domain are the key ideas in this paper. In §3 and §4, we describe the
constructions of the maps T1 and T2, respectively. In §5, we prove Theorem 1.1. For
the rest of the paper, we assume that m ≥ 1, Vd and b0 are given positive constants.

2. Construction of the domain Ω

The following lemma defines two constants m1 and m2 which depend only on m,
Vd and b0.
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Lemma 2.1. Let m2, m1 be the unique positive roots of the equations 2/x−Vd x−
2π = 0 and 2/x− Vd x− 2π − x2/(mbm−2

0 π) = 0, respectively. Then m1 < m2 and
2/m2

1 > 2/m2
2 > Vd.

Proof. Clearly m2 =(−π+
√

π2 + 2Vd)/Vd. Let q(x)=2/x−Vdx−2π−x2/(mbm−2
0 π).

Then q′(x) < 0 for x > 0, q → ∞ as x → 0 and q → −∞ as x → ∞. Therefore, q
has a unique positive root m1. Since q(m2) = −m2

2/(mbm−2
0 π) < 0, it is clear that

m1 < m2 and
2

m2
1

>
2

m2
2

=
1
2
(
√

π2 + 2Vd + π)2 > Vd .

The proof of the lemma is complete. �

The next proposition shows that if we are given the normal angle φ as a function
of arc-length, then we can reconstruct the domain Ω. In the lemma, s0 is half the
perimeter of Ω.

Proposition 2.1. Let 0 ≤ φ(s) ≤ π belong to C1[0, s0] and suppose φ ′ > 0 on
[0, s0). Let (x(s), y(s)) satisfy the equations

(2.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a)
dx

ds
= − sin φ(s),

(b)
dy

ds
= cos φ(s)

for 0 ≤ s ≤ s0. Then φ(s) is the normal angle of the curve (x(s), y(s)), 0 ≤ s ≤ s0,
where s is the arc-length. If in addition, y(0) = 0, y(s0) = 0, φ(0) = 0, and φ(s0) =
π, then (x(s), y(s)), 0 ≤ s ≤ s0, is the top half of a domain Ω symmetric about the
x-axis with C2 boundary. By choosing x(0) = 1

2

∫ s0

0
sin φ(ξ) dξ, the origin bisects

the line obtained from the intersection of Ω and the x-axis.

Proof. For a parameterized curve (x(s), y(s)), the tangent direction is given by
(dx/ds, dy/ds). Since (dx/ds, dy/ds) · (cos φ, sin φ) = 0 and 0 ≤ φ ≤ π so that
sin φ > 0, φ is the normal angle. Since

√
(dx/ds)2 + (dy/ds)2 = 1, s is the arc-

length.
Now suppose y(0) = 0, y(s0) = 0, φ(0) = 0 and φ(s0) = π. From our assump-

tions on φ and equation (2.5)(b), y has a unique local maximum and y(s) > 0 on
(0, s0). By reflecting the region bounded between the curve (x(s), y(s)) and the
x-axis about the x-axis, we obtain a domain Ω. This is equivalent to extending y
and φ as odd functions and x as an even function on [−s0, s0], and (2.5) is clearly
still valid on [−s0, s0]. Moreover, φ ∈ C1[−s0, s0] and x, y ∈ C2[−s0, s0]. It is easy
to check that Ω is a C2 domain, in particular (x(s0), 0) = (x(−s0), 0). The last
statement in this proposition follows by imposing the condition x(0) + x(s0) = 0.
The proof of the lemma is complete. �

Consider equation (1.1)(c). For convenience, let A = 1/s2
0 − Vd/2 and B =

A + Vd. Equation (1.1)(c) is a differential equation in φ with two unknowns s0 and
k, so the boundary conditions φ(0) = 0, φ(s0) = π are not enough to determine
them. Therefore, we include equation (2.5)(b) with boundary conditions y(0) =
0, y(s0) = 0. This system together with the above 4 boundary conditions will help
us determine s0 and k. We then use Proposition 2.1 to recover the domain Ω.
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It is more convenient to study the differential equations on a fixed interval; we
therefore map [0, s0] onto [0, 1] by the transformation t = s/s0. The boundary value
problem is

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a)
dφ̂

dt
= s0 [A + (B − k) cos φ̂ − αg∗(φ̂)],

(b)
dŷ

dt
= s0 cos φ̂,

(c) φ̂(0) = 0, φ̂(1) = π, ŷ(0) = 0, ŷ(1) = 0 ,

where φ̂(t) = φ(s0t) and ŷ(t) = y(s0t). Note the addition of α in front of g∗(φ̂) in
(2.6)(a).

Proposition 2.2. Let g∗ ∈ C1[0, π] be a nonnegative function with ‖g∗‖C[0,π] ≤
M1. Let m∗

1 = (−π +
√

π2 + 2Vd + 4M1 )/(Vd + 2M1). Then for 0 ≤ α ≤ 1, (2.6)
has a unique solution (s0, k, φ̂, ŷ), where φ̂ ∈ C2[0, 1], ŷ ∈ C3[0, 1], dφ̂/dt > 0, and

(2.7) (a) m∗
1 ≤ s0 ≤ m2 , (b) Vd ≤ k ≤ 2

m∗2
1

, (c)
dφ̂

dt
≤ 4m2

m∗2
1

.

Proof. The proof is rather technical and is given in Appendix A. We first show that
the results are true when α = 0 and then use degree theory to show that they are
true for all α ∈ [0, 1]. �

For the rest of this paper, we shall let X = C[0, π] and X+ = {g ∈ X | g ≥ 0}.
Also, we only use Proposition 2.2 with α = 1 in (2.6)(a), and α will be used later
to denote a Hölder exponent.

3. The Map T1

We are now ready to define the map T1. Let g ∈ X+. Define g∗ ∈ C1[0, π]
according to Remark 1 in §1 and let (s0, k, φ̂, ŷ) be the unique solution of (2.6)
according to Proposition 2.2. Let T1(g) = (s0, k, φ̂, ŷ). The bounds in (2.7) depend
on m∗

1, which in turn depends on ‖g‖X . From Proposition 2.1, we can construct
a C2 domain Ω with the properties listed in Remark 2. In what follows, we shall
frequently write T1(g) = (k, Ω) instead of (s0, k, φ̂, ŷ). This should not cause any
confusion.

Lemma 3.1. The map T1 : X+ → Y = R × R × C[0, 1] × C1[0, 1] is continuous
and compact. Let T1(g) = (s0, k, φ̂, ŷ) for any g ∈ X+. Then φ̂ and ŷ satisfy all
the hypotheses in Proposition 2.1 to construct a C2 domain centered at the origin
and symmetric about the x-axis.

Proof. Let gn → ḡ in X+. Then there exists M1 > 0 such that ‖g∗n‖X ≤ ‖gn‖X ≤
M1 and ‖ḡ∗‖X ≤ ‖ḡ‖X ≤ M1 for all n. Let T1(gn) = (kn, (s0)n, φ̂n, ŷn) be the
solution of the boundary value problem (2.6) with g∗ = g∗n and α = 1. Similarly, let
T1(ḡ) = (k̄, s̄0, φ̄, ȳ) be the solution of (2.6) with g∗ = ḡ∗ and α = 1. From (2.7), 0 ≤
dφ̂n/dt ≤ s0(A+B +k) ≤ 4m2/(m∗

1)2, ‖dŷn/dt‖C[0,1] ≤ m2 and ‖d2ŷn/dt2‖C[0,1] ≤
4m2

2/(m∗
1)

2 . Therefore, {(kn, (s0)n, φ̂n, ŷn)} has a subsequence; denote the same,
such that kn → k, (s0)n → s0, φ̂n → φ̂ in C[0, 1], and ŷn → ŷ in C1[0, 1] as
n → ∞. Since g∗n → ḡ∗ in C[0, π] (see Lemma 1.1), by writing the differential
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equations in (2.6) as integral equations, it is easy to see that the limit (k, s0, φ̂, ŷ)
also satisfies (2.6) with g∗ = ḡ∗ and α = 1. From Proposition 2.2, solutions of (2.6)
are unique, so k = k̄, s0 = s̄0, φ̂ = φ̄ and ŷ = ȳ. Hence, every sequence {T1(gn)}
has a subsequence that converges to the same limit T1(ḡ). This implies that T1

is continuous. In the above proof, we have also shown that for every bounded
sequence {gn} in X+, {T1(gn)} contains a convergent subsequence in Y . Hence T1

is compact.
Finally denote T1(g) by (s0, k, φ̂, ŷ); then φ̂ and ŷ will satisfy (2.6). Thus hy-

potheses of Proposition 2.1 will be satisfied. The proof of the lemma is complete. �

Remark 4. We have shown (kn, (s0)n, φ̂n, ŷn) → (k̄, s̄0, φ̄, ȳ) in Y in the above
lemma when gn → ḡ in X+. Let the right hand side of (2.6)(a) be denoted by
f(k, s0, φ̂, ŷ). Since f(kn, (s0)n, φ̂n, ŷn) → f(k̄, s̄0, φ̄, ȳ) in C[0, 1], we have dφ̂n/dt →
dφ̂/dt in C[0, 1]. This improved convergence is needed in Step 3 of the proof of
Lemma 4.4.

Remark 5. As promised in Remark 1 of §1, we now explain why we need to use
g∗. Ideally we would like to use |∇b| instead of g∗ in (1.1)(c). However, when we
define T1(g), we actually have a choice as to which function space X to use for g.
If X = C[0, π] and we don’t regularize g to g∗, then the solution to (1.1)(c) with
g∗ = g may not be unique. This means that it is possible for φ(s) = φ̂ on an interval
(s1, s2), where φ̂ is a root of the right hand side of (1.1)(c). Geometrically, this is
equivalent to ∂Ω containing a line segment. In such a case, s(φ) is multi-valued
and T1(g) is not well defined. One might try letting X = C1[0, π] so that (1.1)(c)
has unique solution. However, in order to use Theorem 5.1, we have to obtain a
uniform bound on ‖gλ‖C1[0,π] for any gλ that satisfies λT (gλ) = gλ independent of
0 ≤ λ ≤ 1. This can be achieved if we can obtain a uniform positive lower bound
for (φλ)t. Differentiating (2.6)(a), we obtain (φλ)tt = · · · − g′λ(φλ)(φλ)t. Since the
lower bound of (φλ)t is in turn dependent on the uniform bound on ‖gλ‖C1[0,π], we
are unable to obtain such an a priori estimate.

4. The Map T2

Let g ∈ X+ and let T1(g) = (k, Ω) be defined as in the previous section. To
define T2(k, Ω), we first need to solve the elliptic boundary value problem (1.1)(a),
(b). Note that because φ̂ ∈ C1[0, 1], equations (2.5) imply that Ω is a C2 domain.
Moreover Ω ⊂ [−L, L] × R with L = m2/2 because of (2.7)(a).

Lemma 4.1. Fix m ≥ 1. Let k > 0 and let Ω ⊂ R2 be a C2 domain centered at
the origin and symmetric about the x-axis. Then for any 0 < α < 1, there exists a
unique positive function b ∈ C 2,α(Ω) ∩ C 1,α(Ω) that satisfies

(4.1)

⎧⎨
⎩

(a) ∆bm + kbx − b = 0 in Ω ,

(b) b = b0 on ∂Ω .

Furthermore, b(x, y) = b(x,−y). Suppose Ω ⊂ [−L, L] × R and 0 < k1 ≤ k.
Then there exists a constant bmin > 0, depending only L and k1 but not on other
properties of Ω, such that b ≥ bmin in Ω.
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Proof. Let w = bm. Then (4.1) becomes

(4.2)

⎧⎪⎨
⎪⎩

(a) ∆w + k
wx

mw1−1/m
− w1/m = 0 in Ω ,

(b) w = bm
0 on ∂Ω .

Let w = bm
0 and let N(w) denote the left side of (4.2)(a). Then N(w) < 0 in Ω

and w ≤ w on ∂Ω. Now let w = γeδx, where δ and γ are chosen such that kδ > m
and 0 < γeδx ≤ bm

0 in Ω. Then

N(w) = γδ2eδx +
(

kδ

m
− 1

)
γ1/meδx/m > 0 in Ω and w ≤ bm

0 on ∂Ω.

Therefore, w is an upper solution and w is a lower solution of (4.2). Let f(ξ, �η) =
ξ1/m − kη1/mξ(1−1/m). Then for w ≤ ξ ≤ w, there exists a constant C > 0,
depending on m, b0, k, γ and δ, such that |f(ξ, �η)| ≤ C(1 + |�η|2). It follows from a
theorem of Amann and Crandall ([1, Thm. 1]) that there exists a positive solution
w ∈ W 2,p(Ω) of (4.2) for any p > 1. By taking p sufficiently large, from the
Sobolev embedding theorem we have w ∈ C1,α(Ω) for any 0 < α < 1. Hence,
b = w1/m ∈ C1,α(Ω) is a positive solution to our elliptic boundary value problem
(4.1). Now we treat (4.1)(a) as a linear elliptic equation ∇·(mbm−1∇b)+kbx−b = 0
with positive diffusion coefficient mbm−1 ∈ C1,α(Ω). Using standard Schauder
estimates on a C2 domain, we conclude that b ∈ C 2,α(Ω)∩C 1,α(Ω). This completes
the existence proof of the first part of the lemma.

To prove uniqueness, let b1, b2 be two solutions to the elliptic boundary problem.
Since b1, b2 are smooth, by considering a subdomain of Ω if necessary, we may
assume without loss of generality that b1 ≥ b2 in Ω. Subtracting one equation from
another, we have

∆ (bm
1 − bm

2 ) + k(b1 − b2)x − (b1 − b2) = 0 in Ω , b1 − b2 = 0 on ∂Ω .

Integrating and applying the divergence theorem, we have∫
∂Ω

∇(bm
1 − bm

2 ) · n =
∫

Ω

(b1 − b2) .

Since bm
1 ≥ bm

2 ≥ 0 in Ω and b1 = b2 on ∂Ω, the left side of the above equation is
nonpositive, while the right side is positive. Hence, b1 = b2 and solutions to (4.1)
are unique. Since Ω is symmetric about the x-axis, b(x,−y) is also a solution of
(4.1). From uniqueness, b(x, y) = b(x,−y).

To prove the second half of the lemma, we simply choose δ and γ in the definition
of w above such that k1δ > m and 0 < γeδL ≤ bm

0 , and we let bmin = min
Ω

w1/m.

Then bmin depends only on m, L, k1 and b0 and b ≥ bmin in Ω. The proof of the
lemma is complete. �

Let b(x, y) be the solution obtained in Lemma 4.1. Recalling that t = s/s0,
where s is the arc length, we can regard |∇b| as a function of t ∈ [0, 1] in the upper
half of ∂Ω. Let g ∈ X+; then from Proposition 2.2, dφ̂/dt > 0, so that the inverse
function t(φ̂) can be defined and is continuous. Let T2(k, Ω) = |∇b|(t(φ)), which
clearly belongs to X+. We need to show that T2 is continuous in the sense that if
T1(gn) = (kn, Ωn) → (k̄, Ω) in Y , then T2(kn, Ωn) → T2(k̄, Ω) in X as n → ∞. (Y
is defined in Lemma 3.1). Together with Lemma 3.1, T = T2 ◦ T1 : X+ → X+ is
continuous and compact. A crucial part of the proof is to control ‖bn‖C 1,α(Ω), where
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bn is the solution of (4.1) with k = kn and Ω = Ωn. This is done in Lemma 4.3,
and the proof of continuity of T2 is given in Lemma 4.4. To prove Lemma 4.3, we
need the following lemma.

Lemma 4.2. Let Ω be a C2 convex domain which is symmetric about the x-axis.
Let its boundary curvature κ satisfy 0 < κ ≤ κ0. Then there exists a disk U with
radius 1/2κ0 such that for any point P ∈ ∂Ω, U may be placed inside Ω and touches
∂Ω only at P .

Proof. Without loss of generality, we may assume that P = (x1, 0) is the further-
most right point on Ω lying on the x-axis. Let U be a circle of radius 1/2κ0. Since
∂U has a constant curvature of 2κ0, it is clear that in a small neighborhood of
P , U touches ∂Ω only at P . Now suppose ∂Ω comes back and intersects U from
outside for the first time at the point Q = (x2, y2). Because Ω is symmetric about
the x-axis, we may assume that y2 > 0. Recall that φ represents the normal angle
of a domain. Let φ|Q = φ1 for U and φ|Q = φ2 for Ω. Then 0 < φ1 ≤ φ2 ≤ π. Let
(x(s), y(s)) represent the location of a boundary point in rectangular coordinates
where s is the arc length measured counterclockwise from P . The equations

(4.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a)
dx

ds
= − sin φ ,

(b)
dy

ds
= cos φ

hold for both ∂U and ∂Ω. Moreover, their respective normal angles satisfy 0 ≤ φ ≤
π from P to Q. Integrating (4.3)(a) along the boundary of U from P to Q counter-
clockwise, we have −

∫ x2

x1
dx =

∫ φ1

0
sin φ (ds/dφ) dφ =

∫ φ1

0
sin φ/2κ0 dφ. Likewise,

integrating (4.3)(a) along ∂Ω from P to Q, we have −
∫ x2

x1
dx =

∫ φ2

0
sin φ (ds/dφ) dφ

=
∫ φ2

0
sin φ/κ dφ. Therefore,∫ φ1

0

sin φ

2κ0
dφ =

∫ φ2

0

sin φ

κ
dφ ≥

∫ φ1

0

sin φ

κ
dφ ≥

∫ φ1

0

sin φ

κ0
dφ,

which is a contradiction. Therefore, ∂Ω cannot intersect U at Q. The proof of the
lemma is complete. �
Lemma 4.3. Let Ω ⊂ [−L, L] × R satisfy the hypotheses of Lemma 4.2 and let
0 < k1 ≤ k ≤ k2. Then there exists 0 < α < 1 and M1,α > 0, which depends on
L, k1, k2 and κ0 only but not on other properties of Ω, such that the unique positive
solution b from Lemma 4.1 satisfies ‖b‖C 1,α(Ω) ≤ M1,α.

Proof. We regard (1.1)(a) as a linear elliptic equation ∇· (mbm−1∇b)+kbx − b = 0
with diffusion coefficient mbm−1. From Lemma 4.1, there exists a constant bmin >
0, depending only on L and k1, such that bmin ≤ b ≤ b0. It is clear that a C 2

convex domain will satisfy the uniform exterior cone condition (see [10, p. 205])
since a cone V with vertex angle π/4 can be attached to any point on ∂Ω and lie
outside of Ω. At any point x0 ∈ ∂Ω, let B(x0, R0) be a disk with radius R0 = 1/2κ0

constructed according to Lemma 4.2. We now apply Theorem 8.27 in [10] to (1.1).
Since there is no source term and b = b0 on ∂Ω, we have, using the notation in
Theorem 8.27 of [10], k = 0, σ = 0, λ = mbm−1

min , Λ = mbm−1
0 and ν =

√
k2
2 + 1/λ.

Hence, b is Hölder continuous along a strip S of uniform width covering ∂Ω with
Hölder exponent α and Hölder norm of b in S depending only on λ, Λ, ν, R0 and
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the cone V . Since bmin depends only on k1, L, and α, S depend only on L, k1,
k2 and κ0, together with a similar Hölder estimate in the interior of Ω (see [10,
Thm. 8.22]), b ∈ Cα(Ω), where α and ‖b‖C α(Ω) depend only on L, k1, k2 and κ0.
Once we have a uniform Hölder norm bound on b, Theorem 8.33 of [10] allows us
to bootstrap to the C 1,α norm bound for b. In view of the last line on page 210
of [10], such a higher norm bound depends only on the constants L, k1, k2 and κ0.
The proof of the lemma is complete. �
Lemma 4.4. Let gn → ḡ in X+ as n → ∞. Let T1(gn) = (kn, Ωn) and T1(ḡ) =
(k̄, Ωn). Then T2(kn, Ωn) → T2(k̄, Ω) in X as n → ∞.

Proof. The proof of this lemma is rather technical and is given in Appendix B. �

5. Proof of Theorem 1.1

Theorem 5.1 (Schaefer’s Theorem). Let Z+ be a cone of a Banach space Z and
let A : Z+ → Z+ be a continuous and compact mapping. Assume that the set
{u ∈ Z+ | u = λA[u] for some 0 ≤ λ ≤ 1} is bounded. Then A has a fixed point
in Z+.

Proof. See [8, Chaper 9.2.2], which is stated for a Banach space. The proof there
also works when Z is replaced by Z+. �
Lemma 5.1. Let λT (gλ) = gλ, where 0 < λ ≤ 1. Then s0(λ) ≥ m1(λ), where
m1(λ) is the unique positive root of the equation

(5.1) qλ(x) = − x2

mbm−2
0 π

+
1
λ

(
2
x
− Vdx − 2π

)
= 0 .

Proof. Let T1(g) = (s0, k, φ, y) = (k, Ω) and let T (g) = T2(k, Ω) = |∇b|(φ). For the
time being, we do not assume that g is a fixed point of λT . We first integrate equa-
tion (4.1)(a) over Ω. Since b ≤ b0 and n = ∇b/|∇b|, the isoparametric inequality
and divergence theorem imply that

(5.2)

b0
(2s0)2

4π
≥ b0|Ω| ≥

∫
Ω

b = mbm−1
0

∫
∂Ω

∂b

∂n
= mbm−1

0

∫
∂Ω

|∇b| ds

= 2mbm−1
0 s0

∫ 1

0

|∇b|(t) dt = 2mbm−1
0

∫ π

0

|∇b|(φ)
κ(φ)

dφ ,

where κ = dφ/ds. Since y(0) = y(1) = 0, integrating equation (2.6)(a) with α = 1,
we have

(5.3) π = s0A− s0

∫ 1

0

g∗(φ(t)) dt = s0A−
∫ s0

0

g∗(φ(s)) ds = s0A−
∫ π

0

g∗(φ)
κ(φ)

dφ .

Now suppose λT (gλ) = gλ and T (gλ) = |∇bλ(φ)|, where we have used bλ to empha-
size the dependence of b on λ. From our hypothesis, gλ = λ|∇bλ|(φ). From Remark
1 in §1, g∗λ(φ) = λ[|∇bλ|(φ)]∗ ≤ λ|∇bλ|(φ). Therefore, (5.3) and the definition of A
imply that

λ

∫ π

0

|∇bλ|(φ)
κλ(φ)

dφ ≥ 1
s0(λ)

− Vd

2
s0(λ) − π .

Combining this with (5.2), we have qλ(s0) ≤ 0. It can be proved (see proof of
Lemma 2.1) that qλ(x) decreases from ∞ to −∞ on the interval (0,∞). Therefore,
m1(λ) ≤ s0(λ). The proof of the lemma is complete. �
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Lemma 5.2. Let λT (gλ) = gλ, where 0 < λ ≤ 1. Then there exist α ∈ (0, 1) and
C, which depend only on m, b0 and Vd but not on λ, such that ‖gλ‖X ≤ C.

Proof. Differentiating (5.1) with respect to λ and rearranging, we have

dm1(λ)
dλ

=
− m2

1(λ)
λmbm−2

0 π

2m1(λ)
mbm−2

0 π
+

1
λ

(
2

m2
1(λ)

+ Vd

) < 0 .

Therefore, m1 ≤ m1(λ) ≤ s0(λ) for 0 < λ ≤ 1, where m1 is defined in Lemma 2.1.
It can also be checked that s0(λ) ≤ m2 (see the proof of Lemma 2.1). Since
κλ(φ) = s0(λ) [Aλ + (Bλ − kλ) cos φ− g∗λ(φ)] ≥ 0, we have Aλ + (Bλ − kλ) cos φ ≥
g∗λ(φ) ≥ 0. Let φ = 0; then kλ ≤ Aλ + Bλ = 2/s2

0(λ) ≤ 2/m2
1. Also, dφ̂λ/dt ≤

s0(λ) (Aλ + Bλ + kλ) ≤ 4m2/m2
1. Therefore, the bounds in (2.7) hold for s0(λ), kλ

and φ̂λ, with m∗
1 replaced by m1. These bounds are independent of 0 < λ ≤ 1. Let

κ0 = 4m2/m2
1 in Lemma 4.3. Then Lemma 4.3 implies that ‖bλ‖C1,α(Ωλ) ≤ M1,α

with α and M1,α again independent of λ ∈ (0, 1]. Since ‖gλ‖X = ‖λ∇bλ‖X , we can
let C = M1,α. The proof of the lemma is complete. �

From Lemmas 3.1 and 4.4, T : X+ → X+ is continuous and compact. From
Lemma 5.2, the hypotheses of Theorem 5.1 are satisfied. Therefore, T has a fixed
point which solves (1.1) and is our traveling domain solution. From (1.3), g∗(φ) =
[|∇b|]∗(φ) is C∞. Equation (2.6)(a) with α = 1 implies that φ̂ ∈ C∞[0, 1] and
ŷ ∈ C∞[0, 1] for our fixed point. From Proposition 2.1, the domain Ω is C∞ and
equation (4.1) implies that b ∈ C∞(Ω). The proof of Theorem 1.1 is complete.

6. Appendix A: Proof of Proposition 2.2

Lemma 6.1. Let α = 0; then there exists a solution to system (2.6) with

(a) s0 =
−π +

√
π2 + 2Vd

Vd
, (b) k = Vd +

π

s0
,

(c) φ̂(t) = πt , and (d) ŷ(t) =
s0

π
sin (πt) .

(6.1)

Proof. This solution corresponds to the domain Ω being a circle with radius s0/π
and can be verified by direct substitution. Note that A = π/s0 and k = B in this
case. �
Lemma 6.2. The solution to (2.6) is unique when α = 0.

Proof. Let (s0, k, φ̂, ŷ) be a solution to (2.6); then κ(φ̂(t)) �= 0 where κ(φ) is the
right side of equation (2.6)(a). For if κ(φ̂(t1)) = 0, then φ̂1(t) = φ̂(t1) is a constant
solution of (2.6)(a) that equals φ̂(t) at t = t1. By the uniqueness of the solution
to initial value problems for ODE, φ̂(t) = φ̂(t1). But then the boundary conditions
φ̂(0) = 0 and φ̂(1) = π will not be satisfied simultaneously. Therefore, dφ̂/dt > 0
and 0 ≤ φ̂(t) ≤ π on [0, 1].

From (2.6), we have
dφ̂

dt
= s0 A + (B − k)

dŷ

dt
.

Integrating this equation from 0 to 1, we have As0 = π. Since A = 1/s2
0 − Vd/2, s0

is given by (6.1)(a), so all solutions of (2.6) have the same s0.
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We now show that k is also the same for all solutions of (2.6). Integrating the
above displayed equation, we have φ̂(t) = s0 At + (B − k) ŷ(t). From (2.6)(b), we
have dŷ/dt = s0 cos φ̂ = s0 cos(s0At + (B − k) ŷ). This motivates us to consider
the initial value problem

dz

dt
= s0 cos(s0At + (B − u) z), z(0, u) = 0,

where u > 0 is a parameter. Differentiating with respect to u, we have

(6.2)
dzu

dt
+ s0 (B − u)(sin ψ) zu = s0 (sin ψ) z and zu(0, u) = 0,

where ψ = s0At + (B − u)z. We want to consider the function z(1, u) for u > 0.
At u = k, z(t, k) = ŷ(t) so that ψ = φ̂, which lies between 0 and π. Hence,
sin(ψ) ≥ 0. Also, z(t, k) = ŷ(t) ≥ 0. Consequently, s0 (sin ψ) z ≥ 0 and equation
(6.2) becomes an inequality of the form dzu/dt+f(t)zu ≥ 0, zu(0, k) = 0. Since the
inequality is strict for some t, by integrating this over [0, 1] we have zu(1, k) > 0.
The above analysis implies that whenever u = k corresponds to a solution of (2.6),
then z(1, k) = 0 and zu(1, k) > 0. Thus, the graph z(1, u) versus u can cross zero
at most once, which implies that k is the same for any solution of (2.6). With s0

and k now being unique, the uniqueness of ŷ and φ̂ are immediate. The proof of
the lemma is complete. �

Lemma 6.3. Suppose g∗ ∈ C1[0, π] is a nonnegative function and let ‖g∗‖C[0,π] ≤
M1. Recall the definitions of m1 and m2 from Lemma 2.1. Then for 0 ≤ α ≤ 1,
(2.6) has a solution s0, k, φ̂ ∈ C2[0, 1], and ŷ ∈ C3[0, 1], where

(6.3) m∗
1 ≤ s0 ≤ m2 , Vd ≤ k ≤ 2

m∗2
1

, 0 < κ =
dφ̂

dt
≤ 4m2

m∗2
1

,

and m∗
1 = (−π +

√
π2 + 2Vd + 4M1)/(Vd + 2M1).

Proof. Let Φ = Φ(t, k, s0) and Y = Y (t, k, s0, α) be the solutions to equations
(2.6)(a) and (2.6)(b), respectively, with initial conditions Φ(0) = 0 and Y (0) = 0.
For a given α ∈ (0, 1], finding a solution to (2.6) is equivalent to solving the algebraic
equations

(6.4)

⎧⎨
⎩

F (k, s0, α) ≡ Φ(1, k, s0, α) − π = 0,

G(k, s0, α) ≡ Y (1, k, s0, α) = 0

for s0 and k. We know there is an explicit unique solution when α = 0, and we like
to compute the degree of the map (F, G) at this solution. From (2.6)(a), we have

(6.5)
d

dt

(
∂Φ
∂k

)
= −s0 cosΦ − (B − k)s0 sin Φ

∂Φ
∂k

− s0αg∗ ′(Φ)
∂Φ
∂k

with ∂Φ(0)/∂k = 0. When α = 0, from Lemmas 6.1 and 6.2 we have B = k and
Φ = πt. Hence, (6.5) becomes

d

dt

(
∂Φ
∂k

)
= −s0 cos(πt) .
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Integrating, we obtain ∂Φ/∂k = −s0 sin(πt)/π, and hence ∂F/∂k = 0 when α = 0.
Similarly,

d

dt

(
∂Φ
∂s0

)
= A + (B − k) cosΦ − αg∗(Φ)

+ s0

[
∂A

∂s0
+

∂B

∂s0
cosΦ − (B − k) sin Φ

∂Φ
∂s0

− αg∗ ′(Φ)
∂Φ
∂s0

]
.

When α = 0, since A = 1/s2
0 − Vd/2 and B = A + Vd, the above equation may be

simplified to
d

dt

(
∂Φ
∂s0

)
=

(
1
s2
0

− Vd

2

)
+ s0

[
− 2

s3
0

− 2
s3
0

cosΦ
]

= − 1
s2
0

− Vd

2
− 2

s2
0

cos(πt)

with ∂Φ(0)/∂s0 = 0. Solving this initial value problem, we have ∂Φ(1)/∂s0 =
∂F/∂s0 = −1/s2

0 − Vd/2. To continue, we differentiate (2.6)(b) with respect to k
to obtain

(6.6)
d

dt

(
∂Y

∂k

)
= −s0 sin Φ

∂Φ
∂k

with ∂Y (0)/∂k = 0. From above, we know that when α=0, ∂Φ/∂k=−s0 sin(πt)/π.
Therefore,

d

dt

(
∂Y

∂k

)
=

s2
0

π
sin2(πt)

with ∂Y (0)/∂k = 0. Integrating, we obtain ∂Y (1)/∂k = ∂G/∂k = s2
0/(2π) when

α = 0. Putting everything together, at the unique solution of (6.4) when α = 0, we
have

(6.7) det
(

Fk Fs0

Gk Gs0

)
= det

(
0 −1/s2

0 − Vd/2
s2
0/2π Gs0

)
=

1
4π

(2 + Vds
2
0) > 0 .

Let F = (F, G) and let BR be the open ball centered at the origin with radius√
k2 + s2

0 = R. If R is large, it will contain the unique solution of (6.4) for α = 0.
Then equation (6.7) allows us to conclude that when α = 0, we have deg(F , BR, 0) =
1 for any sufficiently large R.

In order to prove that (6.4) has a solution for 0 ≤ α ≤ 1, we need to establish
a priori bounds on s0 and k for α ∈ [0, 1]. To begin, we have dφ̂/dt > 0 (see the
beginning of the proof of Lemma 6.2), 0 ≤ φ̂ ≤ π, 0 ≤ g∗(φ̂) ≤ M1, and ŷ ≥ 0 on
[0, 1]. Integrating (2.6)(a) with respect to t, we have

(6.8) φ̂ = s0A t + (B − k)ŷ − α s0

∫ t

0

g∗(φ̂(ξ)) dξ .

Evaluating at t = 1, we have[
Vd

2
+ α

∫ 1

0

g∗(φ̂(ξ)) dξ

]
s2
0 + πs0 − 1 = 0 .

Hence,

(6.9) s0 =
−π +

√
π2 + 2Vd + 4α

∫ 1

0
g∗(φ̂(ξ)) dξ

Vd + 2α
∫ 1

0
g∗(φ̂(ξ)) dξ

≤ −π +
√

π2 + 2Vd

Vd
= m2 .
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The last inequality follows because the equation ax2+bx−c = 0, where a, b and c are
positive, has a unique positive root x = x(a). Since ∂x/∂a = −x2/(2ax + b) < 0, x
is decreasing in a. The right side of the inequality in (6.9) is the positive root of the
equation (Vd/2)s2

0 + πs0 − 1 = 0, and therefore (6.9) follows. Let M1 = ‖g∗‖C[0,π];
we have α

∫ 1

0
g∗(φ̂(ξ)) dξ ≤ M1. From (6.9), s0 ≥

√
π2 + 2Vd + 4M1)/(Vd +2M1) =

m∗
1. Hence, m∗

1 ≤ s0 ≤ m2.
We now turn to estimate k. Evaluating (2.6)(a) at t = 0, we have

s0 [A + B − k − αg∗(0)] = dφ̂(0)/dt ≥ 0.

Hence, k ≤ A + B = 2/s2
0 ≤ 2/m∗2

1 . Evaluating (2.6)(a) at t = 1, we have
s0 [A − B + k − αg∗(π)] = dφ̂(1)/dt ≥ 0. Thus, k ≥ Vd + αg∗(π) ≥ Vd.

We now define the domain

U =
{

(k, s0)
∣∣∣∣ Vd

2
< k <

4
m∗2

1

,
m∗

1

2
< s0 < 2m2

}
.

From the above a priori bounds, deg(F ,U , 0) = deg(F , BR, 0) = 1 by the excision
property of degree and F �= 0 on ∂U for 0 ≤ α ≤ 1. Hence, deg(F ,U , 0) = 1 for
any α ∈ [0, 1]. In other words a solution exists for (6.4), which is equivalent to
(2.6). From (2.6)(a), κ = dφ̂/dt ≤ s0 [A + B + k] ≤ 4m2/m∗ 2

1 . It is also clear that
φ̂ ∈ C2[0, 1] and ŷ ∈ C3[0, 1]. The proof of the lemma is complete. �

Lemma 6.4. Let the hypotheses of Lemma 6.3 be satisfied. Then the solution to
(2.6), which is shown to exist in Lemma 6.3, is unique.

Proof. Let κ = A+(B−k) cos φ−αg∗(φ). Then because g∗ is smooth, the solution
to (2.6)(a) is unique and κ > 0 on [0, π]. Integrating (2.6), we have

(6.10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a) s0 −
∫ π

0

1
κ

dφ = 0,

(b)
∫ π

0

cos φ

κ
dφ = 0 .

We shall show that (6.10) has unique solutions. Let z = 1/s2
0 and rewrite (6.10) as

(6.11)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
z
−

∫ π

0

1 + cosφ

κ
dφ = 0 ,

∫ π

0

cos φ

κ
dφ = 0 .

Also, A = z − Vd/2 and B = z + Vd/2.
Let

(6.12) I(z, k) = 2
√

z −
∫ π

0

log[A + (B − k) cos φ − αg∗(φ)] dφ .

Direct calculations yield

(6.13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂I

∂z
=

1√
z
−

∫ π

0

1 + cosφ

κ
dφ,

∂I

∂k
=

∫ π

0

cos φ

κ
dφ .
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Finding a critical point of I is equivalent to solving (6.11). Upon further calcula-
tions, we have

(6.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2I

∂z2
= − 1

2z3/2
+

∫ π

0

(1 + cosφ)2

κ2
dφ,

∂2I

∂k2
=

∫ π

0

cos2 φ

κ2
dφ,

∂2I

∂z∂k
= −

∫ π

0

cos φ (1 + cosφ)
κ2

dφ.

Define the Hessian matrix

(6.15) H =
(

Izz Izk

Izk Ikk

)
.

After some algebraic manipulations, we find that

(6.16) det(H) =
∫ π

0

cos2 φ

κ2
dφ

(∫ π

0

1
κ2

dφ − s3
0

2

)
−

(∫ π

0

cos φ

κ2
dφ

)2

.

Let β = s0/π. From (=(6.10)(b),
∫ π

0

cos φ

κ2
dφ =

∫ π

0

cos φ

κ

(
1
κ
− β

)
dφ .

From Cauchy-Schwartz’s inequality, (6.10)(a) and the definition of β, we have
(∫ π

0

cos φ

κ2
dφ

)2

≤
∫ π

0

cos2 φ

κ2
dφ

∫ π

0

(
1
κ
− β

)2

dφ

=
∫ π

0

cos2 φ

κ2
dφ

(∫ π

0

1
κ2

dφ − s2
0

π

)
.

Since s0 ≤ m2 = (−π +
√

π2 + 2Vd)/Vd < 2/π, we have s2
0/π > s3

0/2, which implies
that det(H) > 0 at any critical point of I.

Let F̂ = (Iz, Ik) and consider it as a function of (z, k, α). From above, at
any critical point (z0, k0) of I, we have F̂(z0, k0, α) = 0 and det(F̂ ′)(z0, k0, α) =
det(H)(z0, k0, α) > 0, where ′ means derivatives with respect to z and k. For
any α ∈ [0, 1], a solution (z0, k0) to F̂ (z, k, α) = 0 exists by assumption. Since
det(F̂ ′) > 0 at any such solution, the implicit function theorem implies that (z0, k0)
is a C1 function of α and never bifurcates. Since we also have a priori bounds on
z0 and k0 for α ∈ [0, 1], the curve (z0(α), k0(α)) exists for α ∈ [0, 1]. If there
are 2 solutions at some α = α0 where α0 ∈ [0, 1], we will have 2 distinct solution
curves going back to α = 0, since the curves do not bifurcate. Hence, there are
2 distinct solutions for α = 0 which contradict Lemma 6.2. Therefore there is a
unique C1 solution curve (z0(α), k0(α)) for α ∈ [0, 1]. With s0 and k being unique,
since g∗ ∈ C1[0, π], solutions of (2.6) are clearly unique. The proof of the lemma is
complete. �
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7. Appendix B: Proof of Lemma 4.4

Let T1(gn) = (kn, Ωn) → T1(ḡ) = (k̄, Ω0) as n → ∞. To show that T2(kn, Ωn)
converges to T2(k̄, Ω0), we shall prove that every sequence of T2(kn, Ωn) has a
further subsequence that converges to T2(k̄, Ω0) as n → ∞. There are three steps
to the proof.

Step 1. There exists a subsequence {bnj
} such that ‖bnj

− b̄‖C 1(K) → 0 as j → 0
on every compact subset K in the interior of Ω0.

Let bn, b̄ be the solutions of (4.1) with k = kn, Ω = Ωn and k = k̄, Ω = Ω0, re-
spectively. Since ‖gn‖X are uniformly bounded, (2.7) holds and Lemma 4.3 implies
that ‖bn‖C 1,α(Ωn) ≤ M1,α, where M1,α is independent of n. Therefore, there exists
a subsequence {bnj

} and b̃ ∈ C1(K) such that ‖bnj
− b̃‖C 1(K) → 0 as j → ∞. Tak-

ing a sequence of compact subsets expanding to Ω and using a diagonal subsequence
argument on {bnj

}, we have b̃ ∈ C1(Ω0). Let η ∈ C∞
0 (Ω0) be a test function. Then

η has compact support inside Ωn for sufficiently large n. Hence multiplying (4.1)(a)
by η and integrating over Ωn, we have∫

Ω0

{−mb̃m−1 ∇b̃ · ∇η + k̄ b̃x η − b̃ η} = 0

after taking the limit as n → ∞. Hence b̃ is a weak solution to (4.1). The interior
regularity bootstrap allows us to conclude that b̃ is a C2 solution of (4.1)(a) in the
interior of Ω0. Moreover ‖∇b̃‖L∞(Ω) ≤ M1,α.

Next we define b̃ = b0 on ∂Ω0 and show that b̃ is smooth on Ω0. Let the upper
half of ∂Ωn be parameterized by zn(t) = (xn(t), yn(t)), t ∈ [0, 1]. Likewise, let ∂Ω0

be parameterized by z0(t). From our hypotheses, zn(t) → z0(t) uniformly on [0, 1].
Let z = (x, y) be a point in the interior of Ω0 and let zn ∈ ∂Ωn, z0(t∗) ∈ ∂Ω0 be
such that |z − zn| = dist(z, ∂Ωn) and |z − z0(t∗)| = dist(z, ∂Ω0). Let z∗n ∈ ∂Ωn be
such that |z∗n − z0(t∗)| = dist(z0(t∗), ∂Ωn) (see Figure 2). Then

(7.1) |z−zn| ≤ |z−z∗n| ≤ |z−z0(t∗)|+|z0(t∗)−z∗n| ≤ |z−z0(t∗)|+|z0(t∗)−zn(t∗)| .

−2 −1 0 1 2 3−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Ωn

z

Ω0

z0(t
*)

zn

zn*

Figure 2. Ωn converging to Ω0.

The first and last inequalities in (7.1) follow from the definition of distance from
the boundary. (The point zn(t∗) is not shown in Figure 2.) Since zn → z0 uniformly
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on [0, 1], the last term in (7.1) goes to zero as n → ∞. Therefore, given ε > 0, for
sufficiently large n, we have

(7.2) |b0 − bnj
(z)| ≤ M1,α dist(z, ∂Ωn) ≤ M1,α {dist(z, ∂Ω0) + ε} .

Letting j → ∞, (7.2) is valid with bnj
replaced by b̃. Therefore, b̃ ∈ C(Ω0). With

‖∇b̃‖L∞(Ω) ≤ M1,α, we can treat (kb̃x − b̃) as a L∞ source term in (4.1) with b̃ = b0

on ∂Ω0. Standard Lp estimates then imply that b̃m ∈ W 2,p(Ω0) for any p > 1.
Together with improvement in regularity using Schauder interior estimates, we have
b̃ ∈ C2,α(Ω0) ∩ C1,α(Ω0). Lemma 4.1 implies that b̃ = b̄. The proof of Step 1 is
complete.

Step 2. Let |∇bnj
|(t) = |∇bnj

(znj
(t))| and let |∇b̄|(t) = |∇b̄ (z0(t))|. Then a

subsequence of |∇bnj
|(t) converges to |∇b̄|(t) uniformly on [0, 1] as j → ∞.

From Lemma 4.3 and the fact that |z̈n(t)| is uniformly bounded on [0, 1] (see
(2.5)), {|∇bnj

|} and {żnj
} are uniformly Hölder continuous on [0, 1]. Hence there

exists a further subsequence of {nj}, also denoted by {nj}, and a function v ∈
C[0, 1], such that |∇bnj

|(t) → v(t) and żnj
(t) → ż0(t) uniformly on [0, 1] as j → ∞.

Let η ∈ C∞
0 (R2), which is symmetric about the x-axis. Then, multiplying (4.1)(a)

by η and integrating the equation over Ωnj
, we have

0 =
∫

Ωnj

(∇ · (mbm−1
nj

∇bnj
) + knj

bnjx − bnj
) η

= mbm−1
0

∫
∂Ωnj

η|∇bnj
| − m

∫
Ωnj

bm−1
nj

∇bnj
· ∇η + knj

∫
Ωnj

bnjxη −
∫

Ωnj

bnj
η .

(7.3)

A similar expression holds for b̄ and Ω0. Since ‖∇bnj
‖L∞(Ωnj

) ≤ M1,α, the result
in Step 1 and the dominated convergence theorem imply that all terms involving
area integrals over Ωnj

in the second line of (7.3) go to the same integrals with
Ωnj

, bnj
, knj

replaced by Ω0, b̄, k̄, respectively as j → ∞. Passing to the limit and
then subtracting one equation from the other, we have

(7.4)
∫ 1

0

η(z0(t)) v(t) |ż0(t)| dt =
∫ 1

0

η(z0(t)) |∇b̄(z0(t))| |ż0(t)| dt .

Since η is arbitrary, we have v(t) = |∇b̄(z0(t))| = |∇b̄|(t). The proof of Step 2 is
complete.

Step 3. Let φn be the unique solution of (2.6) with g∗ replaced by g∗n and let tn(ψ) =
φ−1

n (ψ) for 0 ≤ ψ ≤ π which is defined since dφn/dt > 0. Let t̄(ψ) = φ̄−1(ψ) be
similarly defined. Then there exists a subsequence of {nj} which is defined in Step
2, denoted the same, such that tnj

converges to t̄ in C1[0, π].
Since dφ̄/dt is positive and continuous on [0, 1], there exist positive constants δ

and M such that δ < dφ̄/dt < M on [0, 1]. From Remark 4 in §3, there exists a
subsequence of {nj}, denoted the same, such that φnj

→ φ̄ in C1[0, 1]. Therefore,
δ < dφnj

/dt < M on [0, 1] for sufficiently large j. Differentiating φ−1
n (φn(t)) = t,

we have 1/M ≤ dφ−1
n /dψ ≤ 1/δ on [0, π]. Therefore, there exist a v ∈ C[0, π] and

a further subsequence such that φ−1
nj

→ v in X. Using the fact that φnj
→ φ̄ in
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C[0, 1], it is easy to see that v = φ̄−1 so that tnj
= φ−1

nj
→ t̄ = φ̄−1 in X as j → ∞.

The proof of Step 3 is complete.

To finish the proof, recall that T2(kn, Ωn) = |∇bn|(tn(ψ)) and T2(k̄, Ω) =
|∇b|(t(ψ)). Step 2 shows that |∇bnj

|(t) → |∇b̄|(t) uniformly on [0, 1], and Step
3 shows that tnj

(ψ) → t̄(ψ) uniformly on [0, π]. Therefore, T2(knj
, Ωnj

) → T2(k̄, Ω)
in C[0, π]. The proof of Lemma 4.4 is complete.
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