A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications
HTML articles powered by AMS MathViewer
- by Nguyen Van Khue and Pham Hoang Hiep PDF
- Trans. Amer. Math. Soc. 361 (2009), 5539-5554 Request permission
Abstract:
In this article we will first prove a result about the convergence in capacity. Next we will obtain a general decomposition theorem for complex Monge-Ampère measures which will be used to prove a comparison principle for the complex Monge-Ampère operator.References
- P. Åhag, The complex Monge-Ampère operator on bounded hyperconvex domains, Ph.D. Thesis, Umeå University, 2002.
- Zbigniew Błocki, On the definition of the Monge-Ampère operator in $\Bbb C^2$, Math. Ann. 328 (2004), no. 3, 415–423. MR 2036329, DOI 10.1007/s00208-003-0491-0
- Zbigniew Błocki, The domain of definition of the complex Monge-Ampère operator, Amer. J. Math. 128 (2006), no. 2, 519–530. MR 2214901
- Eric Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), no. 1, 1–44. MR 445006, DOI 10.1007/BF01418826
- Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, DOI 10.1007/BF02392348
- Eric Bedford and B. A. Taylor, Fine topology, Šilov boundary, and $(dd^c)^n$, J. Funct. Anal. 72 (1987), no. 2, 225–251. MR 886812, DOI 10.1016/0022-1236(87)90087-5
- Urban Cegrell, Pluricomplex energy, Acta Math. 180 (1998), no. 2, 187–217. MR 1638768, DOI 10.1007/BF02392899
- Urban Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 1, 159–179 (English, with English and French summaries). MR 2069125
- Urban Cegrell, A general Dirichlet problem for the complex Monge-Ampère operator, Ann. Polon. Math. 94 (2008), no. 2, 131–147. MR 2438854, DOI 10.4064/ap94-2-3
- U. Cegrell, S. Kolodziej, and A. Zeriahi, Subextension of plurisubharmonic functions with weak singularities, Math. Z. 250 (2005), no. 1, 7–22. MR 2136402, DOI 10.1007/s00209-004-0714-4
- RafałCzyż, Convergence in capacity of the Perron-Bremermann envelope, Michigan Math. J. 53 (2005), no. 3, 497–509. MR 2207203, DOI 10.1307/mmj/1133894161
- Dan Coman, Norman Levenberg, and Evgeny A. Poletsky, Quasianalyticity and pluripolarity, J. Amer. Math. Soc. 18 (2005), no. 2, 239–252. MR 2137977, DOI 10.1090/S0894-0347-05-00478-9
- Jean-Pierre Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115–193. MR 1211880
- J-P. Demailly, Potential theory in several variables, preprint (1989).
- Sławomir Kołodziej, The range of the complex Monge-Ampère operator. II, Indiana Univ. Math. J. 44 (1995), no. 3, 765–782. MR 1375348, DOI 10.1512/iumj.1995.44.2007
- Pham Hoang Hiep, A characterization of bounded plurisubharmonic functions, Ann. Polon. Math. 85 (2005), no. 3, 233–238. MR 2181753, DOI 10.4064/ap85-3-4
- Pham Hoang Hiep, The comparison principle and Dirichlet problem in the class $\scr E_p(f)$, $p>0$, Ann. Polon. Math. 88 (2006), no. 3, 247–261. MR 2260404, DOI 10.4064/ap88-3-4
- Pierre Lelong, Notions capacitaires et fonctions de Green pluricomplexes dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 3, 71–76 (French, with English summary). MR 901138
- Yang Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), no. 2, 457–467. MR 1322940, DOI 10.1090/S0002-9939-96-03316-3
- Yang Xing, Complex Monge-Ampère measures of plurisubharmonic functions with bounded values near the boundary, Canad. J. Math. 52 (2000), no. 5, 1085–1100. MR 1782339, DOI 10.4153/CJM-2000-045-x
Additional Information
- Nguyen Van Khue
- Affiliation: Department of Mathematics, Hanoi University of Education, Dai hoc Su Pham Hanoi, Cau Giay, Hanoi, Vietnam
- Pham Hoang Hiep
- Affiliation: Department of Mathematics, Hanoi University of Education, Dai hoc Su Pham Hanoi, Cau Giay, Hanoi, Vietnam
- Email: phhiep_vn@yahoo.com
- Received by editor(s): December 29, 2006
- Received by editor(s) in revised form: January 3, 2008
- Published electronically: May 15, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 361 (2009), 5539-5554
- MSC (2000): Primary 32W20; Secondary 32U15
- DOI: https://doi.org/10.1090/S0002-9947-09-04730-8
- MathSciNet review: 2515822