## Local well-posedness for the modified KdV equation in almost critical $\widehat {H^r_s}$-spaces

HTML articles powered by AMS MathViewer

- by Axel Grünrock and Luis Vega PDF
- Trans. Amer. Math. Soc.
**361**(2009), 5681-5694 Request permission

## Abstract:

We study the Cauchy problem for the modified KdV equation \[ u_t + u_{xxx} + (u^3)_x = 0, \hspace {2cm} u(0)=u_0\] for data $u_0$ in the space $\widehat {H_s^r}$ defined by the norm \[ \|u_0\|_{\widehat {H_s^r}} := \|\langle \xi \rangle ^s\widehat {u_0}\| _{L^{r’}_{\xi }}.\] Local well-posedness of this problem is established in the parameter range $2 \ge r >1$, $s \ge \frac {1}{2} - \frac {1}{2r}$, so the case $(s,r)=(0,1)$, which is critical in view of scaling considerations, is almost reached. To show this result, we use an appropriate variant of the Fourier restriction norm method as well as bi- and trilinear estimates for solutions of the Airy equation.## References

- J. Bourgain,
*Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations*, Geom. Funct. Anal.**3**(1993), no. 2, 107–156. MR**1209299**, DOI 10.1007/BF01896020 - Thierry Cazenave, Luis Vega, and Mari Cruz Vilela,
*A note on the nonlinear Schrödinger equation in weak $L^p$ spaces*, Commun. Contemp. Math.**3**(2001), no. 1, 153–162. MR**1820017**, DOI 10.1142/S0219199701000317 - Michael Christ, James Colliander, and Terrence Tao,
*Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations*, Amer. J. Math.**125**(2003), no. 6, 1235–1293. MR**2018661** - Charles Fefferman,
*Inequalities for strongly singular convolution operators*, Acta Math.**124**(1970), 9–36. MR**257819**, DOI 10.1007/BF02394567 - German Fonseca, Felipe Linares, and Gustavo Ponce,
*Global well-posedness for the modified Korteweg-de Vries equation*, Comm. Partial Differential Equations**24**(1999), no. 3-4, 683–705. MR**1683054**, DOI 10.1080/03605309908821438 - J. Ginibre, Y. Tsutsumi, and G. Velo,
*On the Cauchy problem for the Zakharov system*, J. Funct. Anal.**151**(1997), no. 2, 384–436. MR**1491547**, DOI 10.1006/jfan.1997.3148 - Axel Grünrock,
*An improved local well-posedness result for the modified KdV equation*, Int. Math. Res. Not.**61**(2004), 3287–3308. MR**2096258**, DOI 10.1155/S1073792804140981 - Axel Grünrock,
*Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS*, Int. Math. Res. Not.**41**(2005), 2525–2558. MR**2181058**, DOI 10.1155/IMRN.2005.2525 - Carlos E. Kenig, Gustavo Ponce, and Luis Vega,
*Oscillatory integrals and regularity of dispersive equations*, Indiana Univ. Math. J.**40**(1991), no. 1, 33–69. MR**1101221**, DOI 10.1512/iumj.1991.40.40003 - Carlos E. Kenig, Gustavo Ponce, and Luis Vega,
*Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle*, Comm. Pure Appl. Math.**46**(1993), no. 4, 527–620. MR**1211741**, DOI 10.1002/cpa.3160460405 - Carlos E. Kenig, Gustavo Ponce, and Luis Vega,
*On the ill-posedness of some canonical dispersive equations*, Duke Math. J.**106**(2001), no. 3, 617–633. MR**1813239**, DOI 10.1215/S0012-7094-01-10638-8 - G. Perelman and L. Vega,
*Self-similar planar curves related to modified Korteweg-de Vries equation*, J. Differential Equations**235**(2007), no. 1, 56–73. MR**2309566**, DOI 10.1016/j.jde.2006.12.018 - Per Sjölin,
*Regularity of solutions to the Schrödinger equation*, Duke Math. J.**55**(1987), no. 3, 699–715. MR**904948**, DOI 10.1215/S0012-7094-87-05535-9 - Ana Vargas and Luis Vega,
*Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$ norm*, J. Math. Pures Appl. (9)**80**(2001), no. 10, 1029–1044 (English, with English and French summaries). MR**1876762**, DOI 10.1016/S0021-7824(01)01224-7

## Additional Information

**Axel Grünrock**- Affiliation: Fachbereich C: Mathematik/Naturwissenschaften, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
- Address at time of publication: Mathemathisches Institut, Universitat Bonn, Beringstrasse 4, D-53115 Bonn, Germany
- Email: Axel.Gruenrock@math.uni-wuppertal.de, gruenroc@math.uni-bonn.de
**Luis Vega**- Affiliation: Departamento de Matematicas, Universidad del Pais Vasco, 48080 Bilbao, Spain
- MR Author ID: 237776
- Email: luis.vega@ehu.es
- Received by editor(s): March 2, 2007
- Published electronically: June 8, 2009
- © Copyright 2009 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**361**(2009), 5681-5694 - MSC (2000): Primary 35Q55
- DOI: https://doi.org/10.1090/S0002-9947-09-04611-X
- MathSciNet review: 2529909