Local well-posedness for the modified KdV equation in almost critical -spaces
Authors:
Axel Grünrock and Luis Vega
Journal:
Trans. Amer. Math. Soc. 361 (2009), 5681-5694
MSC (2000):
Primary 35Q55
DOI:
https://doi.org/10.1090/S0002-9947-09-04611-X
Published electronically:
June 8, 2009
MathSciNet review:
2529909
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the Cauchy problem for the modified KdV equation







- [B93] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, https://doi.org/10.1007/BF01896020
- [CVV01] Thierry Cazenave, Luis Vega, and Mari Cruz Vilela, A note on the nonlinear Schrödinger equation in weak 𝐿^{𝑝} spaces, Commun. Contemp. Math. 3 (2001), no. 1, 153–162. MR 1820017, https://doi.org/10.1142/S0219199701000317
- [CCT03] Michael Christ, James Colliander, and Terrence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235–1293. MR 2018661
- [F70] Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 257819, https://doi.org/10.1007/BF02394567
- [FLP99] German Fonseca, Felipe Linares, and Gustavo Ponce, Global well-posedness for the modified Korteweg-de Vries equation, Comm. Partial Differential Equations 24 (1999), no. 3-4, 683–705. MR 1683054, https://doi.org/10.1080/03605309908821438
- [GTV97] J. Ginibre, Y. Tsutsumi, and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), no. 2, 384–436. MR 1491547, https://doi.org/10.1006/jfan.1997.3148
- [G04] Axel Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not. 61 (2004), 3287–3308. MR 2096258, https://doi.org/10.1155/S1073792804140981
- [G05] Axel Grünrock, Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not. 41 (2005), 2525–2558. MR 2181058, https://doi.org/10.1155/IMRN.2005.2525
- [KPV91] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1, 33–69. MR 1101221, https://doi.org/10.1512/iumj.1991.40.40003
- [KPV93] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527–620. MR 1211741, https://doi.org/10.1002/cpa.3160460405
- [KPV01] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617–633. MR 1813239, https://doi.org/10.1215/S0012-7094-01-10638-8
- [PV05] G. Perelman and L. Vega, Self-similar planar curves related to modified Korteweg-de Vries equation, J. Differential Equations 235 (2007), no. 1, 56–73. MR 2309566, https://doi.org/10.1016/j.jde.2006.12.018
- [S87] Per Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699–715. MR 904948, https://doi.org/10.1215/S0012-7094-87-05535-9
- [VV01] Ana Vargas and Luis Vega, Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite 𝐿² norm, J. Math. Pures Appl. (9) 80 (2001), no. 10, 1029–1044 (English, with English and French summaries). MR 1876762, https://doi.org/10.1016/S0021-7824(01)01224-7
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35Q55
Retrieve articles in all journals with MSC (2000): 35Q55
Additional Information
Axel Grünrock
Affiliation:
Fachbereich C: Mathematik/Naturwissenschaften, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
Address at time of publication:
Mathemathisches Institut, Universitat Bonn, Beringstrasse 4, D-53115 Bonn, Germany
Email:
Axel.Gruenrock@math.uni-wuppertal.de, gruenroc@math.uni-bonn.de
Luis Vega
Affiliation:
Departamento de Matematicas, Universidad del Pais Vasco, 48080 Bilbao, Spain
Email:
luis.vega@ehu.es
DOI:
https://doi.org/10.1090/S0002-9947-09-04611-X
Received by editor(s):
March 2, 2007
Published electronically:
June 8, 2009
Article copyright:
© Copyright 2009
American Mathematical Society