Transverse LS category for Riemannian foliations
HTML articles powered by AMS MathViewer
- by Steven Hurder and Dirk Töben PDF
- Trans. Amer. Math. Soc. 361 (2009), 5647-5680 Request permission
Abstract:
We study the transverse Lusternik-Schnirelmann category theory of a Riemannian foliation $\mathcal {F}$ on a closed manifold $M$. The essential transverse category $\operatorname {cat}^e_{\cap {\mkern -9mu}\mid }(M,\mathcal {F})$ is introduced in this paper, and we prove that $\operatorname {cat}^e_{\cap {\mkern -9mu}\mid }(M,\mathcal {F})$ is always finite for a Riemannian foliation. Necessary and sufficient conditions are derived for when the usual transverse category $\operatorname {cat}_{\cap {\mkern -9mu}\mid }(M,\mathcal {F})$ is finite, and thus $\operatorname {cat}^e_{\cap {\mkern -9mu}\mid }(M,\mathcal {F}) = \operatorname {cat}_{\cap {\mkern -9mu}\mid }(M,\mathcal {F})$ holds.
A fundamental point of this paper is to use properties of Riemannian submersions and the Molino Structure Theory for Riemannian foliations to transform the calculation of $\operatorname {cat}^e_{\cap {\mkern -9mu}\mid }(M,\mathcal {F})$ into a standard problem about $\mathbf O(q)$-equivariant LS category theory. A main result, Theorem 1.6, states that for an associated $\mathbf O(q)$-manifold $\widehat W$, we have that $\operatorname {cat}^e_{\cap {\mkern -9mu}\mid }(M,\mathcal {F}) = \operatorname {cat}_{\mathbf O(q)}(\widehat W)$. Hence, the traditional techniques developed for the study of smooth compact Lie group actions can be effectively employed for the study of the LS category of Riemannian foliations.
A generalization of the Lusternik-Schnirelmann theorem is derived: given a $C^1$-function $f \colon M \to \mathbb {R}$ which is constant along the leaves of a Riemannian foliation $\mathcal {F}$, the essential transverse category $\operatorname {cat}^e_{\cap {\mkern -9mu}\mid }(M,\mathcal {F})$ is a lower bound for the number of critical leaf closures of $f$.
References
- Marcos M. Alexandrino, Singular Riemannian foliations with sections, Illinois J. Math. 48 (2004), no. 4, 1163–1182. MR 2113670
- Marcos M. Alexandrino and Dirk Töben, Singular Riemannian foliations on simply connected spaces, Differential Geom. Appl. 24 (2006), no. 4, 383–397. MR 2231053, DOI 10.1016/j.difgeo.2005.12.005
- R. Ayala, F. F. Lasheras, and A. Quintero, The equivariant category of proper $G$-spaces, Rocky Mountain J. Math. 31 (2001), no. 4, 1111–1132. MR 1895288, DOI 10.1216/rmjm/1021249432
- Thomas Bartsch, Topological methods for variational problems with symmetries, Lecture Notes in Mathematics, vol. 1560, Springer-Verlag, Berlin, 1993. MR 1295238, DOI 10.1007/BFb0073859
- Robert A. Blumenthal and James J. Hebda, Ehresmann connections for foliations, Indiana Univ. Math. J. 33 (1984), no. 4, 597–611. MR 749317, DOI 10.1512/iumj.1984.33.33032
- Robert A. Blumenthal and James J. Hebda, Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 140, 383–392. MR 767769, DOI 10.1093/qmath/35.4.383
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- César Camacho and Alcides Lins Neto, Geometric theory of foliations, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the Portuguese by Sue E. Goodman. MR 824240, DOI 10.1007/978-1-4612-5292-4
- A. Candel and L. Conlon, Foliations I, Amer. Math. Soc., Providence, RI, 2000.
- Yves Carrière, Flots riemanniens, Astérisque 116 (1984), 31–52 (French). Transversal structure of foliations (Toulouse, 1982). MR 755161
- Kuo Tsai Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831–879. MR 454968, DOI 10.1090/S0002-9904-1977-14320-6
- H. Colman, Categoría LS en foliaciones, Publicaciones del Departamento de Topología y Geometría, no. 93, Universidade de Santiago de Compostele, 1998.
- Hellen Colman, LS-categories for foliated manifolds, Foliations: geometry and dynamics (Warsaw, 2000) World Sci. Publ., River Edge, NJ, 2002, pp. 17–28. MR 1882763, DOI 10.1142/9789812778246_{0}002
- Hellen Colman, Equivariant LS-category for finite group actions, Lusternik-Schnirelmann category and related topics (South Hadley, MA, 2001) Contemp. Math., vol. 316, Amer. Math. Soc., Providence, RI, 2002, pp. 35–40. MR 1962151, DOI 10.1090/conm/316/05493
- Hellen Colman, Transverse Lusternik-Schnirelmann category of Riemannian foliations, Topology Appl. 141 (2004), no. 1-3, 187–196. MR 2058687, DOI 10.1016/j.topol.2003.12.006
- H. Colman, Lusternik–Schnirelmann category of Orbifolds, preprint, 2006.
- Hellen Colman and Steven Hurder, LS-category of compact Hausdorff foliations, Trans. Amer. Math. Soc. 356 (2004), no. 4, 1463–1487. MR 2034314, DOI 10.1090/S0002-9947-03-03459-7
- Hellen Colman and Enrique Macias-Virgós, Transverse Lusternik-Schnirelmann category of foliated manifolds, Topology 40 (2001), no. 2, 419–430. MR 1808226, DOI 10.1016/S0040-9383(99)00067-1
- Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857, DOI 10.1090/surv/103
- Michael Davis, Smooth $G$-manifolds as collections of fiber bundles, Pacific J. Math. 77 (1978), no. 2, 315–363. MR 510928
- J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000. MR 1738431, DOI 10.1007/978-3-642-56936-4
- Robert Edwards, Kenneth Millett, and Dennis Sullivan, Foliations with all leaves compact, Topology 16 (1977), no. 1, 13–32. MR 438353, DOI 10.1016/0040-9383(77)90028-3
- D. B. A. Epstein, Foliations with all leaves compact, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, viii, 265–282 (English, with French summary). MR 420652
- Yves Carrière, Flots riemanniens, Astérisque 116 (1984), 31–52 (French). Transversal structure of foliations (Toulouse, 1982). MR 755161
- E. Fadell, The equivariant Ljusternik-Schnirelmann method for invariant functionals and relative cohomological index theories, Topological methods in nonlinear analysis, Sém. Math. Sup., vol. 95, Presses Univ. Montréal, Montreal, QC, 1985, pp. 41–70. MR 801933
- E. Fadell and S. Husseini, Relative cohomological index theories, Adv. in Math. 64 (1987), no. 1, 1–31. MR 879854, DOI 10.1016/0001-8708(87)90002-8
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- Étienne Ghys, Feuilletages riemanniens sur les variétés simplement connexes, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 4, 203–223 (French, with English summary). MR 766280
- André Haefliger, Homotopy and integrability, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 133–163. MR 0285027
- A. Haefliger, Pseudogroups of local isometries, Differential geometry (Santiago de Compostela, 1984) Res. Notes in Math., vol. 131, Pitman, Boston, MA, 1985, pp. 174–197. MR 864868
- André Haefliger, Leaf closures in Riemannian foliations, A fête of topology, Academic Press, Boston, MA, 1988, pp. 3–32. MR 928394
- André Haefliger, Feuilletages riemanniens, Astérisque 177-178 (1989), Exp. No. 707, 183–197 (French). Séminaire Bourbaki, Vol. 1988/89. MR 1040573
- A. Haefliger and É. Salem, Riemannian foliations on simply connected manifolds and actions of tori on orbifolds, Illinois J. Math. 34 (1990), no. 4, 706–730. MR 1062771
- André Haefliger and Éliane Salem, Actions of tori on orbifolds, Ann. Global Anal. Geom. 9 (1991), no. 1, 37–59. MR 1116630, DOI 10.1007/BF02411354
- Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups. I, Amer. J. Math. 89 (1967), 705–786. MR 217213, DOI 10.2307/2373241
- Steven Hurder, On the homotopy and cohomology of the classifying space of Riemannian foliations, Proc. Amer. Math. Soc. 81 (1981), no. 3, 485–489. MR 597668, DOI 10.1090/S0002-9939-1981-0597668-4
- Steven Hurder, Category and compact leaves, Topology Appl. 153 (2006), no. 12, 2135–2154. MR 2239077, DOI 10.1016/j.topol.2005.08.006
- Steven Hurder, Category and compact leaves, Topology Appl. 153 (2006), no. 12, 2135–2154. MR 2239077, DOI 10.1016/j.topol.2005.08.006
- S. Hurder and D. Töben, Residues and transverse LS category for Riemannian foliations, in preparation, 2007.
- S. Hurder and P. Walczak, Compact foliations with finite transverse LS category, Jour. Math. Soc. Japan, to appear.
- P. Iglésias, Connexions et difféologie, Aspects dynamiques et topologiques des groupes infinis de transformation de la mécanique (Lyon, 1986) Travaux en Cours, vol. 25, Hermann, Paris, 1987, pp. 61–78 (French, with English summary). MR 906897
- I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331–348. MR 516214, DOI 10.1016/0040-9383(78)90002-2
- I. M. James, Lusternik-Schnirelmann category, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 1293–1310. MR 1361912, DOI 10.1016/B978-044481779-2/50028-6
- Klaus Jänich, On the classification of $O(n)$-manifolds, Math. Ann. 176 (1968), 53–76. MR 226674, DOI 10.1007/BF02052956
- Katsuo Kawakubo, The theory of transformation groups, Translated from the 1987 Japanese edition, The Clarendon Press, Oxford University Press, New York, 1991. MR 1150492
- W. Krawcewicz and W. Marzantowicz, Lusternik-Schnirelman method for functionals invariant with respect to a finite group action, J. Differential Equations 85 (1990), no. 1, 105–124. MR 1052330, DOI 10.1016/0022-0396(90)90091-3
- Remi Langevin and PawełG. Walczak, Transverse Lusternik-Schnirelmann category and non-proper leaves, Foliations: geometry and dynamics (Warsaw, 2000) World Sci. Publ., River Edge, NJ, 2002, pp. 351–354. MR 1882778, DOI 10.1142/9789812778246_{0}017
- Connor Lazarov and Joel Pasternack, Secondary characteristic classes for Riemannian foliations, J. Differential Geometry 11 (1976), no. 3, 365–385. MR 445513
- Connor Lazarov and Joel Pasternack, Residues and characteristic classes for Riemannian foliations, J. Differential Geometry 11 (1976), no. 4, 599–612. MR 445514
- L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les Problèmes Variationnels. Hermann, Paris, 1934.
- Wacław Marzantowicz, A $G$-Lusternik-Schnirelman category of space with an action of a compact Lie group, Topology 28 (1989), no. 4, 403–412. MR 1030984, DOI 10.1016/0040-9383(89)90002-5
- Xiang Ming Mei, Note on the residues of the singularities of a Riemannian foliation, Proc. Amer. Math. Soc. 89 (1983), no. 2, 359–366. MR 712652, DOI 10.1090/S0002-9939-1983-0712652-7
- Kenneth C. Millett, Compact foliations, Differential topology and geometry (Proc. Colloq., Dijon, 1974) Lecture Notes in Math., Vol. 484, Springer, Berlin, 1975, pp. 277–287. MR 0391122
- Pierre Molino, Étude des feuilletages transversalement complets et applications, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 3, 289–307 (French). MR 458446
- Pierre Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 1, 45–76 (French). MR 653455
- Pierre Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988. Translated from the French by Grant Cairns; With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. MR 932463, DOI 10.1007/978-1-4684-8670-4
- Pierre Molino, Orbit-like foliations, Geometric study of foliations (Tokyo, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 97–119. MR 1363720
- I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261, DOI 10.1017/CBO9780511615450
- Richard S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115–132. MR 259955, DOI 10.1016/0040-9383(66)90013-9
- Richard S. Palais and Chuu-Lian Terng, Critical point theory and submanifold geometry, Lecture Notes in Mathematics, vol. 1353, Springer-Verlag, Berlin, 1988. MR 972503, DOI 10.1007/BFb0087442
- K. Richardson, The asymptotics of heat kernels on Riemannian foliations, Geom. Funct. Anal. 8 (1998), no. 2, 356–401. MR 1616151, DOI 10.1007/s000390050060
- Ken Richardson, The transverse geometry of $G$-manifolds and Riemannian foliations, Illinois J. Math. 45 (2001), no. 2, 517–535. MR 1878616
- Éliane Salem, Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d’isométries, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 2, 185–200 (French, with English summary). MR 949015
- I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359–363. MR 79769, DOI 10.1073/pnas.42.6.359
- J.-M. Souriau, Groupes différentiels, Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979) Lecture Notes in Math., vol. 836, Springer, Berlin-New York, 1980, pp. 91–128 (French). MR 607688
- P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc. (3) 29 (1974), 699–713. MR 362395, DOI 10.1112/plms/s3-29.4.699
- P. Stefan, Integrability of systems of vector fields, J. London Math. Soc. (2) 21 (1980), no. 3, 544–556. MR 577729, DOI 10.1112/jlms/s2-21.3.544
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- Robert A. Wolak, Basic forms for transversely integrable singular Riemannian foliations, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1543–1545. MR 1662230, DOI 10.1090/S0002-9939-99-05316-2
- R.A. Wolak, Critical leaves of basic functions for a singular Riemannian foliation, preprint 2002.
- Kenji Yamato, Sur la classe caractéristique exotique de Lazarov-Pasternack en codimension $2$, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 10, A537–A540 (French, with English summary). MR 557268
- Kenji Yamato, Sur la classe caractéristique exotique de Lazarov-Pasternack en codimension $2$. II, Japan. J. Math. (N.S.) 7 (1981), no. 2, 227–256 (French). MR 729436, DOI 10.4099/math1924.7.227
Additional Information
- Steven Hurder
- Affiliation: Department of Mathematics, University of Illinois at Chicago, 322 SEO (m/c 249), 851 S. Morgan Street, Chicago, Illinois 60607-7045
- MR Author ID: 90090
- ORCID: 0000-0001-7030-4542
- Email: hurder@uic.edu
- Dirk Töben
- Affiliation: Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany
- Email: dtoeben@math.uni-koeln.de
- Received by editor(s): October 4, 2006
- Published electronically: June 16, 2009
- Additional Notes: The first author was supported in part by NSF grant DMS-0406254
The second author was supported by the Schwerpunktprogramm SPP 1154 of the DFG - © Copyright 2009 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 361 (2009), 5647-5680
- MSC (2000): Primary 57R30, 53C12, 55M30; Secondary 57S15
- DOI: https://doi.org/10.1090/S0002-9947-09-04672-8
- MathSciNet review: 2529908