On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Ricci flow
HTML articles powered by AMS MathViewer
- by Yanir A. Rubinstein PDF
- Trans. Amer. Math. Soc. 361 (2009), 5839-5850
Abstract:
In this note we construct Nadel multiplier ideal sheaves using the Ricci flow on Fano manifolds. This extends a result of Phong, Šešum, and Sturm. These sheaves, like their counterparts constructed by Nadel for the continuity method, can be used to obtain an existence criterion for Kähler-Einstein metrics.References
- Thierry Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95 (French, with English summary). MR 494932
- Thierry Aubin, Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal. 57 (1984), no. 2, 143–153 (French). MR 749521, DOI 10.1016/0022-1236(84)90093-4
- Shigetoshi Bando and Toshiki Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 11–40. MR 946233, DOI 10.2969/aspm/01010011
- Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359–372. MR 799272, DOI 10.1007/BF01389058
- Xiuxiong Chen, Peng Lu, and Gang Tian, A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3391–3393. MR 2231924, DOI 10.1090/S0002-9939-06-08360-2
- X. X. Chen and G. Tian, Ricci flow on Kähler-Einstein surfaces, Invent. Math. 147 (2002), no. 3, 487–544. MR 1893004, DOI 10.1007/s002220100181
- X. X. Chen, On Kähler manifolds with positive orthogonal bisectional curvature, Adv. Math. 215 (2007), no. 2, 427–445. MR 2355611, DOI 10.1016/j.aim.2006.11.006
- Bennett Chow, The Ricci flow on the $2$-sphere, J. Differential Geom. 33 (1991), no. 2, 325–334. MR 1094458
- Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part I, Mathematical Surveys and Monographs, vol. 135, American Mathematical Society, Providence, RI, 2007. Geometric aspects. MR 2302600, DOI 10.1090/surv/135
- Jean-Pierre Demailly, On the Ohsawa-Takegoshi-Manivel $L^2$ extension theorem, Complex analysis and geometry (Paris, 1997) Progr. Math., vol. 188, Birkhäuser, Basel, 2000, pp. 47–82 (English, with English and French summaries). MR 1782659
- Jean-Pierre Demailly and János Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525–556 (English, with English and French summaries). MR 1852009, DOI 10.1016/S0012-9593(01)01069-2
- Wei Yue Ding, Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann. 282 (1988), no. 3, 463–471. MR 967024, DOI 10.1007/BF01460045
- Wei-Yue Ding, Gang Tian, The generalized Moser-Trudinger inequality, in Nonlinear Analysis and Microlocal Analysis: Proceedings of the International Conference at Nankai Institute of Mathematics (K.-C. Chang et al., Eds.), World Scientific, 1992, 57–70. ISBN 9810209134.
- Akito Futaki, Kähler-Einstein metrics and integral invariants, Lecture Notes in Mathematics, vol. 1314, Springer-Verlag, Berlin, 1988. MR 947341, DOI 10.1007/BFb0078084
- Daniel Zhuang-Dan Guan, Quasi-Einstein metrics, Internat. J. Math. 6 (1995), no. 3, 371–379. MR 1327154, DOI 10.1142/S0129167X95000110
- Daniel Guan, Extremal solitons and exponential $C^\infty$ convergence of the modified Calabi flow on certain $\Bbb {C}\textrm {P}^1$ bundles, Pacific J. Math. 233 (2007), no. 1, 91–124. MR 2366370, DOI 10.2140/pjm.2007.233.91
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Richard S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237–262. MR 954419, DOI 10.1090/conm/071/954419
- J. J. Kohn, Subellipticity of the $\bar \partial$-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213, DOI 10.1007/BF02395058
- Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. MR 1618325, DOI 10.1007/BF02392879
- Toshiki Mabuchi, $K$-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575–593. MR 867064, DOI 10.2748/tmj/1178228410
- Alan Michael Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. MR 1078269, DOI 10.2307/1971429
- Nefton Pali, Characterization of Einstein-Fano manifolds via the Kähler-Ricci flow, preprint, arxiv:math.DG/0607581v2.
- D. H. Phong, Natasa Sesum, and Jacob Sturm, Multiplier ideal sheaves and the Kähler-Ricci flow, Comm. Anal. Geom. 15 (2007), no. 3, 613–632. MR 2379807
- Yanir A. Rubinstein, On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood, J. Funct. Anal. 255 (2008), no. 9, 2641–2660. MR 2473271, DOI 10.1016/j.jfa.2007.10.009
- Yanir A. Rubinstein, The Ricci iteration and its applications, C. R. Math. Acad. Sci. Paris 345 (2007), no. 8, 445–448 (English, with English and French summaries). MR 2367363, DOI 10.1016/j.crma.2007.09.020
- Yanir A. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math. 218 (2008), no. 5, 1526–1565. MR 2419932, DOI 10.1016/j.aim.2008.03.017
- Natasa Sesum and Gang Tian, Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman), J. Inst. Math. Jussieu 7 (2008), no. 3, 575–587. MR 2427424, DOI 10.1017/S1474748008000133
- Santiago R. Simanca, Heat flows for extremal Kähler metrics, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 2, 187–217. MR 2163555
- Yum Tong Siu, The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. of Math. (2) 127 (1988), no. 3, 585–627. MR 942521, DOI 10.2307/2007006
- Jian Song, The $\alpha$-invariant on toric Fano manifolds, Amer. J. Math. 127 (2005), no. 6, 1247–1259. MR 2183524
- Gang Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M)>0$, Invent. Math. 89 (1987), no. 2, 225–246. MR 894378, DOI 10.1007/BF01389077
- Gang Tian, On stability of the tangent bundles of Fano varieties, Internat. J. Math. 3 (1992), no. 3, 401–413. MR 1163733, DOI 10.1142/S0129167X92000175
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176
- Gang Tian and Shing-Tung Yau, Kähler-Einstein metrics on complex surfaces with $C_1>0$, Comm. Math. Phys. 112 (1987), no. 1, 175–203. MR 904143
- Gang Tian and Xiaohua Zhu, Convergence of Kähler-Ricci flow, J. Amer. Math. Soc. 20 (2007), no. 3, 675–699. MR 2291916, DOI 10.1090/S0894-0347-06-00552-2
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
- Rugang Ye, The logarithmic Sobolev inequality along the Ricci flow, preprint, arxiv:0707.2424v4 [math.DG].
- Qi S. Zhang, A uniform Sobolev inequality under Ricci flow, Int. Math. Res. Not. IMRN 17 (2007), Art. ID rnm056, 17. MR 2354801, DOI 10.1093/imrn/rnm056
Additional Information
- Yanir A. Rubinstein
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Masachusetts 02139-4307
- Address at time of publication: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 795645
- Email: yanir@member.ams.org
- Received by editor(s): August 30, 2007
- Published electronically: May 7, 2009
- © Copyright 2009 Yanir A. Rubinstein
- Journal: Trans. Amer. Math. Soc. 361 (2009), 5839-5850
- MSC (2000): Primary 32Q20; Secondary 14J45, 32L10, 32W20, 53C25, 58E11
- DOI: https://doi.org/10.1090/S0002-9947-09-04675-3
- MathSciNet review: 2529916
Dedicated: To Aynat Rubinstein